Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Floods forecast for Bangladesh

31.10.2001


Better flood forecasting could save lives in Bangladesh.
© AP/Abu Taher Khokon


With a weather monitoring network a new model could predict coastal floods in Bangladesh.

A new model should help forecast the massive floods to which the northern coast of Bangladesh is prone1. In principle, the model can predict the heights and arrival times of the huge waves that cyclones cause, and so could improve the planning of sea defences.

The effectiveness of the model will depend on the availability of accurate, timely and detailed meteorological data, cautions Bangladeshi scientist Junaid Amin As-Salek. He has spent six years in Japan with Takashi Yasuda of Gifu University developing the mathematical picture of the interactions between Bangladesh’s ocean, atmosphere and shoreline.

Gathering input data remains a formidable challenge. The technology for a weather-monitoring network exists, says As-Salek, who is now at the Great Lakes Environmental Research Laboratory in Michigan, USA. But a shortage of funding hampers its use in Bangladesh.

Bangladesh’s coast is in constant danger of devastating floods. Tropical hurricanes in the Indian Ocean move towards the coast, pushing a wall of water ahead of them. This creates a great wave called a storm surge, which can reach 12 meters high. In 1970, a five-metre wave flooded a million acres of rice fields, killing at least 200,000 people. More than 100,000 further lives were lost this way in 1991.

The country is densely populated and lacks the resources to erect defences or carry out evacuations. Also, the land is so low that even flood waves a couple of metres high can have terrible consequences.

Making waves

A coastal wave can have different effects at different times and places, making flooding hard to predict. As-Salek and Yasuda focused on the estuary of the Meghna River in the north of the Bay of Bengal - the region generally hit hardest by storm surges.

Their model provides a framework for predicting specific floods. It takes into account how coastal winds, the shape of the estuary, and the ebb and flow of the local tides affect a storm surge. A surge that coincides with a high tide, for example, is much more destructive. The estuary can also have a funnelling effect that accentuates flooding, As-Salek says.

The model could also help in planning permanent sea defences. At present, defences in Bangladesh are "very scattered and inadequate", says As-Salek who feels they were not based on scientific predictions.

Coastal engineering relies on estimates of the ’design cyclone’: the hypothetical hurricane that generates the flood wave with the largest water volume at a particular point. As-Salek hopes his model will help make these calculations, putting sea defences on a rational footing. Whether sufficient resources will be available to implement such planning is another matter.

References

  1. As-Salek, J. A. & Yasuda, T. Tide-surge interaction in the Meghna estuary: most severe conditions. Journal of Physical Oceanography, 31, 3059 - 3072, (2001).

PHILIP BALL | Nature News Service
Further information:
http://www.nature.com/nsu/011101/011101-9.html
http://www.nature.com/nsu/

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>