Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rare volcanic plumes create uncommonly dangerous ash flows

16.03.2006


Three unique photographs of a recent volcanic eruption in a remote part of Ecuador show a plume unlike any previously documented, and hint at a newly recognized hazard, say scientists at the University of Illinois at Urbana-Champaign.


Plume of Volcán Reventador



"The usual volcanic plume consists of a stalk capped with an umbrella, and resembles the mushroom of an atom bomb blast," said geology professor Susan Kieffer, "but the umbrella on this plume was wavy, like the shell of a scallop."

In a paper scheduled to appear March 15 in the journal Geophysical Research Letters, Kieffer, theoretical and applied mechanics professor Gustavo Gioia, and graduate student Pinaki Chakraborty explain what might have caused the umbrella to scallop, a task made more difficult by the scarcity of information.


"We had never seen a scalloped umbrella before," said Kieffer, who holds a Charles R. Walgreen Jr. Chair at Illinois. "Unusual conditions must have existed in the volcanic plume that formed this umbrella."

Located about 100 kilometers from Quito, Ecuador, Volcán Reventador -- Spanish for "one that explodes" -- lived up to its name on the morning of Nov. 3, 2002. Following seven hours of seismic activity and billowing steam, the summit cone exploded and sent a stream of ash, called a pyroclastic flow, several kilometers down nearby valleys. While traveling close to the ground, the ash heated the surrounding air, which became buoyant as in a hot-air balloon. The air rose in a volcanic plume, carrying the ash with it.

"A volcanic plume rises until the atmosphere becomes so thin that the mixture of air and ash loses buoyancy and starts to spread laterally, forming an umbrella," Gioia said. "The umbrella spreads and cools for a long time before the ash begins to fall gradually."

But instead of the usual hot ash, the Reventador eruption appears to have been laden with steam and a fairly cool ash from the destruction of the summit cone. The unusually cool umbrella could not spread for a long time. It rapidly became a heavy mixture of air, steam and ash hovering precariously over the lighter air below.

"When a heavier fluid is placed on top of a lighter one, you might say that the fluids want to be reversed," said Chakraborty, the paper’s lead author. "The ensuing tug of war between gravity and the viscosity of the fluids results in a wavy instability that pulls the heavier fluid on a fast sinking course."

In laboratory experiments, the fluids are initially at rest, and the wavelength of the instability is a fraction of an inch. But the mixture of air, steam and ash in the Reventador umbrella was turbulent, with many fast, locally swirling motions.

"Turbulence magnifies the wavelength," Chakraborty said. "It gave the Reventador umbrella its distinctive scallops, which were hundreds of meters in wavelength."

While most umbrellas produce gradual ash falls, scalloped umbrellas behave differently and might represent a previously unrecognized hazard.

"Our analysis suggests that the Reventador umbrella collapsed rapidly, forming new and especially dangerous ash flows," said Kieffer, who is also a professor in the university’s Center for Advanced Study, one of the highest forms of campus recognition.

Originating far from the summit cone, these new ash flows must have helped spread the damage caused by the eruption. They must have been uncommonly energetic, because the ash fell from the umbrella, which was 10 kilometers high.

"For all we know, these flows were responsible for broken petroleum pipelines," Chakraborty said. "The flows might also have contributed to the early phases of a shutdown of Quito airport that lasted more than a week."

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Earth Sciences:

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht What makes corals sick?
11.12.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>