Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rare volcanic plumes create uncommonly dangerous ash flows

16.03.2006


Three unique photographs of a recent volcanic eruption in a remote part of Ecuador show a plume unlike any previously documented, and hint at a newly recognized hazard, say scientists at the University of Illinois at Urbana-Champaign.


Plume of Volcán Reventador



"The usual volcanic plume consists of a stalk capped with an umbrella, and resembles the mushroom of an atom bomb blast," said geology professor Susan Kieffer, "but the umbrella on this plume was wavy, like the shell of a scallop."

In a paper scheduled to appear March 15 in the journal Geophysical Research Letters, Kieffer, theoretical and applied mechanics professor Gustavo Gioia, and graduate student Pinaki Chakraborty explain what might have caused the umbrella to scallop, a task made more difficult by the scarcity of information.


"We had never seen a scalloped umbrella before," said Kieffer, who holds a Charles R. Walgreen Jr. Chair at Illinois. "Unusual conditions must have existed in the volcanic plume that formed this umbrella."

Located about 100 kilometers from Quito, Ecuador, Volcán Reventador -- Spanish for "one that explodes" -- lived up to its name on the morning of Nov. 3, 2002. Following seven hours of seismic activity and billowing steam, the summit cone exploded and sent a stream of ash, called a pyroclastic flow, several kilometers down nearby valleys. While traveling close to the ground, the ash heated the surrounding air, which became buoyant as in a hot-air balloon. The air rose in a volcanic plume, carrying the ash with it.

"A volcanic plume rises until the atmosphere becomes so thin that the mixture of air and ash loses buoyancy and starts to spread laterally, forming an umbrella," Gioia said. "The umbrella spreads and cools for a long time before the ash begins to fall gradually."

But instead of the usual hot ash, the Reventador eruption appears to have been laden with steam and a fairly cool ash from the destruction of the summit cone. The unusually cool umbrella could not spread for a long time. It rapidly became a heavy mixture of air, steam and ash hovering precariously over the lighter air below.

"When a heavier fluid is placed on top of a lighter one, you might say that the fluids want to be reversed," said Chakraborty, the paper’s lead author. "The ensuing tug of war between gravity and the viscosity of the fluids results in a wavy instability that pulls the heavier fluid on a fast sinking course."

In laboratory experiments, the fluids are initially at rest, and the wavelength of the instability is a fraction of an inch. But the mixture of air, steam and ash in the Reventador umbrella was turbulent, with many fast, locally swirling motions.

"Turbulence magnifies the wavelength," Chakraborty said. "It gave the Reventador umbrella its distinctive scallops, which were hundreds of meters in wavelength."

While most umbrellas produce gradual ash falls, scalloped umbrellas behave differently and might represent a previously unrecognized hazard.

"Our analysis suggests that the Reventador umbrella collapsed rapidly, forming new and especially dangerous ash flows," said Kieffer, who is also a professor in the university’s Center for Advanced Study, one of the highest forms of campus recognition.

Originating far from the summit cone, these new ash flows must have helped spread the damage caused by the eruption. They must have been uncommonly energetic, because the ash fell from the umbrella, which was 10 kilometers high.

"For all we know, these flows were responsible for broken petroleum pipelines," Chakraborty said. "The flows might also have contributed to the early phases of a shutdown of Quito airport that lasted more than a week."

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>