Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rare volcanic plumes create uncommonly dangerous ash flows

16.03.2006


Three unique photographs of a recent volcanic eruption in a remote part of Ecuador show a plume unlike any previously documented, and hint at a newly recognized hazard, say scientists at the University of Illinois at Urbana-Champaign.


Plume of Volcán Reventador



"The usual volcanic plume consists of a stalk capped with an umbrella, and resembles the mushroom of an atom bomb blast," said geology professor Susan Kieffer, "but the umbrella on this plume was wavy, like the shell of a scallop."

In a paper scheduled to appear March 15 in the journal Geophysical Research Letters, Kieffer, theoretical and applied mechanics professor Gustavo Gioia, and graduate student Pinaki Chakraborty explain what might have caused the umbrella to scallop, a task made more difficult by the scarcity of information.


"We had never seen a scalloped umbrella before," said Kieffer, who holds a Charles R. Walgreen Jr. Chair at Illinois. "Unusual conditions must have existed in the volcanic plume that formed this umbrella."

Located about 100 kilometers from Quito, Ecuador, Volcán Reventador -- Spanish for "one that explodes" -- lived up to its name on the morning of Nov. 3, 2002. Following seven hours of seismic activity and billowing steam, the summit cone exploded and sent a stream of ash, called a pyroclastic flow, several kilometers down nearby valleys. While traveling close to the ground, the ash heated the surrounding air, which became buoyant as in a hot-air balloon. The air rose in a volcanic plume, carrying the ash with it.

"A volcanic plume rises until the atmosphere becomes so thin that the mixture of air and ash loses buoyancy and starts to spread laterally, forming an umbrella," Gioia said. "The umbrella spreads and cools for a long time before the ash begins to fall gradually."

But instead of the usual hot ash, the Reventador eruption appears to have been laden with steam and a fairly cool ash from the destruction of the summit cone. The unusually cool umbrella could not spread for a long time. It rapidly became a heavy mixture of air, steam and ash hovering precariously over the lighter air below.

"When a heavier fluid is placed on top of a lighter one, you might say that the fluids want to be reversed," said Chakraborty, the paper’s lead author. "The ensuing tug of war between gravity and the viscosity of the fluids results in a wavy instability that pulls the heavier fluid on a fast sinking course."

In laboratory experiments, the fluids are initially at rest, and the wavelength of the instability is a fraction of an inch. But the mixture of air, steam and ash in the Reventador umbrella was turbulent, with many fast, locally swirling motions.

"Turbulence magnifies the wavelength," Chakraborty said. "It gave the Reventador umbrella its distinctive scallops, which were hundreds of meters in wavelength."

While most umbrellas produce gradual ash falls, scalloped umbrellas behave differently and might represent a previously unrecognized hazard.

"Our analysis suggests that the Reventador umbrella collapsed rapidly, forming new and especially dangerous ash flows," said Kieffer, who is also a professor in the university’s Center for Advanced Study, one of the highest forms of campus recognition.

Originating far from the summit cone, these new ash flows must have helped spread the damage caused by the eruption. They must have been uncommonly energetic, because the ash fell from the umbrella, which was 10 kilometers high.

"For all we know, these flows were responsible for broken petroleum pipelines," Chakraborty said. "The flows might also have contributed to the early phases of a shutdown of Quito airport that lasted more than a week."

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Earth Sciences:

nachricht Sea ice extent sinks to record lows at both poles
23.03.2017 | NASA/Goddard Space Flight Center

nachricht Less radiation in inner Van Allen belt than previously believed
21.03.2017 | DOE/Los Alamos National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>