Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reining in Carbon Dioxide Levels Imperative but Possible

10.03.2006


Primary energy production and gross domestic product for selected countries. Both scales are logarithmic. Source: U.S. Energy Information Agency, 2002


Business-as-usual approach threatens world energy supplies and environment, but affordable, effective solutions appear within reach

Implementing a plan to keep rising carbon dioxide levels from reaching potentially dangerous levels could cost less than 1 percent of gross world product as of 2050, a cost that is well within reach of developed and developing nations alike. However, without simultaneous progress in the way energy is found, transformed, transported and used, the world is in danger of facing a severe energy crisis sometime within the next century.

Those are the conclusions of a report by Klaus S. Lackner and Jeffrey D. Sachs of The Earth Institute that appears in the most recent issue of Brookings Papers on Economic Activity published by the Brookings Institute.



"Today’s technology base is insufficient to provide clean and plentiful energy for 9 billion people," the authors write. "To satisfy tomorrow’s energy needs, it will not be enough simply to apply current best practices. Instead, new technologies, especially carbon capture and sequestration at large industrial plants, will need to be brought to maturity."

Primary energy use worldwide is currently about 14 trillion watts each year and rising. This equates to 2.2 kilowatts (kW) per person globally and results in the release of nearly 25 billion tons of carbon dioxide into the atmosphere. Residents of the U.S., however, use 11 kW per person, 85 percent of which comes from burning fossil fuels, a process that contributes to the rising level of carbon dioxide in the Earth’s atmosphere.

"Technology in general and energy at its base ultimately define the carrying capacity of the Earth for humans," says Lackner, director of the Center for Sustainable Energy at the Earth Institute. "If the rest of the world consumed carbon at the U.S. rate, carbon consumption and emissions worldwide would be six times what they are today. This would not only exhaust available oil supplies by the end of the century or sooner, but would also threaten widespread environmental damage."

That scenario is not so far-fetched, given the prospect for economic growth among the world’s developing countries, especially India and China. In 2002, the so-called Annex II countries identified by the Kyoto Accord as developing nations accounted for just 41 percent of carbon dioxide emissions. By 2025 the Annex II share is expected to rise to 60 percent and at the end of the century could total nearly 80 percent of global emissions.

The concentration of carbon dioxide in the Earth’s atmosphere currently stands at roughly 380 parts per million (ppm), an increase of more than 35 percent over pre-industrial levels, largely due to the burning of fossil fuels. At the current rate of increase, the world could reach 550 ppm well before the end of the century, with potentially disastrous implications for human well-being and the Earth’s natural systems.

Lackner and Sachs, however, see vast room for progress in meeting the world’s growing energy needs without threatening to destabilize the Earth’s climate. In particular, they identify carbon capture and sequestration as an important part of any future plan to address the problem. Given the best available projections for energy use, economic growth and atmospheric dynamics, they find that a carbon capture and sequestration system could help keep carbon dioxide levels from reaching 500 ppm by 2050 at a cost of between 0.1 and 0.3 percent of gross world product.

Other large-scale solutions they identify include solar energy, clean coal technology and nuclear power, though they identify problems with each that must be resolved.The authors also see widespread use of hybrid engines as another readily deployable technology to help reduce carbon dioxide emissions. All together, a program to keep the Earth’s carbon dioxide levels in check could cost less than 1 percent of projected gross world product as of 2050.

"Whatever we do, we know we are going to have to approach this complex problem in a multi-faceted way and from a global perspective," said Sachs, director of The Earth Institute. "The key is we have to start now and we have to commit ourselves to making a change before change is forced on us. Fortunately, there are promising technologies that may well offer us solutions at large scale and reasonably low cost."

The Earth Institute at Columbia University is the world’s leading academic center for the integrated study of Earth, its environment and society. The Earth Institute builds upon excellence in the core disciplines — earth sciences, biological sciences, engineering sciences, social sciences and health sciences — and stresses cross-disciplinary approaches to complex problems. Through research, training and global partnerships, it mobilizes science and technology to advance sustainable development, while placing special emphasis on the needs of the world’s poor.

Ken Kostel | EurekAlert!
Further information:
http://www.earth.columbia.edu

More articles from Earth Sciences:

nachricht Monitoring lava lake levels in Congo volcano
16.05.2018 | Seismological Society of America

nachricht Ice stream draining Greenland Ice Sheet sensitive to changes over past 45,000 years
14.05.2018 | Oregon State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>