Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reining in Carbon Dioxide Levels Imperative but Possible

10.03.2006


Primary energy production and gross domestic product for selected countries. Both scales are logarithmic. Source: U.S. Energy Information Agency, 2002


Business-as-usual approach threatens world energy supplies and environment, but affordable, effective solutions appear within reach

Implementing a plan to keep rising carbon dioxide levels from reaching potentially dangerous levels could cost less than 1 percent of gross world product as of 2050, a cost that is well within reach of developed and developing nations alike. However, without simultaneous progress in the way energy is found, transformed, transported and used, the world is in danger of facing a severe energy crisis sometime within the next century.

Those are the conclusions of a report by Klaus S. Lackner and Jeffrey D. Sachs of The Earth Institute that appears in the most recent issue of Brookings Papers on Economic Activity published by the Brookings Institute.



"Today’s technology base is insufficient to provide clean and plentiful energy for 9 billion people," the authors write. "To satisfy tomorrow’s energy needs, it will not be enough simply to apply current best practices. Instead, new technologies, especially carbon capture and sequestration at large industrial plants, will need to be brought to maturity."

Primary energy use worldwide is currently about 14 trillion watts each year and rising. This equates to 2.2 kilowatts (kW) per person globally and results in the release of nearly 25 billion tons of carbon dioxide into the atmosphere. Residents of the U.S., however, use 11 kW per person, 85 percent of which comes from burning fossil fuels, a process that contributes to the rising level of carbon dioxide in the Earth’s atmosphere.

"Technology in general and energy at its base ultimately define the carrying capacity of the Earth for humans," says Lackner, director of the Center for Sustainable Energy at the Earth Institute. "If the rest of the world consumed carbon at the U.S. rate, carbon consumption and emissions worldwide would be six times what they are today. This would not only exhaust available oil supplies by the end of the century or sooner, but would also threaten widespread environmental damage."

That scenario is not so far-fetched, given the prospect for economic growth among the world’s developing countries, especially India and China. In 2002, the so-called Annex II countries identified by the Kyoto Accord as developing nations accounted for just 41 percent of carbon dioxide emissions. By 2025 the Annex II share is expected to rise to 60 percent and at the end of the century could total nearly 80 percent of global emissions.

The concentration of carbon dioxide in the Earth’s atmosphere currently stands at roughly 380 parts per million (ppm), an increase of more than 35 percent over pre-industrial levels, largely due to the burning of fossil fuels. At the current rate of increase, the world could reach 550 ppm well before the end of the century, with potentially disastrous implications for human well-being and the Earth’s natural systems.

Lackner and Sachs, however, see vast room for progress in meeting the world’s growing energy needs without threatening to destabilize the Earth’s climate. In particular, they identify carbon capture and sequestration as an important part of any future plan to address the problem. Given the best available projections for energy use, economic growth and atmospheric dynamics, they find that a carbon capture and sequestration system could help keep carbon dioxide levels from reaching 500 ppm by 2050 at a cost of between 0.1 and 0.3 percent of gross world product.

Other large-scale solutions they identify include solar energy, clean coal technology and nuclear power, though they identify problems with each that must be resolved.The authors also see widespread use of hybrid engines as another readily deployable technology to help reduce carbon dioxide emissions. All together, a program to keep the Earth’s carbon dioxide levels in check could cost less than 1 percent of projected gross world product as of 2050.

"Whatever we do, we know we are going to have to approach this complex problem in a multi-faceted way and from a global perspective," said Sachs, director of The Earth Institute. "The key is we have to start now and we have to commit ourselves to making a change before change is forced on us. Fortunately, there are promising technologies that may well offer us solutions at large scale and reasonably low cost."

The Earth Institute at Columbia University is the world’s leading academic center for the integrated study of Earth, its environment and society. The Earth Institute builds upon excellence in the core disciplines — earth sciences, biological sciences, engineering sciences, social sciences and health sciences — and stresses cross-disciplinary approaches to complex problems. Through research, training and global partnerships, it mobilizes science and technology to advance sustainable development, while placing special emphasis on the needs of the world’s poor.

Ken Kostel | EurekAlert!
Further information:
http://www.earth.columbia.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>