Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pesticides in the nation’s streams and ground water

06.03.2006


USGS releases new report about pesticide occurence



Today, the U.S. Geological Survey released a report describing the occurrence of pesticides in streams and ground water during 1992-2001. The report concludes that pesticides are typically present throughout the year in most streams in urban and agricultural areas of the Nation, but are less common in ground water. The report also concludes that pesticides are seldom at concentrations likely to affect humans. However in many streams, particularly those draining urban and agricultural areas, pesticides were found at concentrations that may affect aquatic life or fish-eating wildlife.

Dr. Robert Hirsch, Associate Director for Water, said, "While the use of pesticides has resulted in a wide range of benefits to control weeds, insects, and other pests, including increased food production and reduction of insect-borne disease, their use also raises questions about possible effects on the environment, including water quality." Hirsch also commented that "the USGS assessment provides the most comprehensive national-scale analysis to date of pesticide occurrence in streams and ground water. Findings show where, when, and why specific pesticides occur, and yield science-based implications for assessing and managing pesticides in our water resources."


The USGS findings show strong relations between the occurrence of pesticides and their use, and point out that some of the frequently detected pesticides, including the insecticide diazinon and the herbicides alachlor and cyanazine, are declining.

USGS has worked closely with the U.S. Environmental Protection Agency (EPA) during the 10-year study. EPA uses the data extensively in their exposure and risk assessments for regulating the use of pesticides. For example, EPA used USGS data in its risk assessments for the reevaluation of diazinon, chlorpyrifos, cyanazine and alachlor. Uses of three of these pesticides (diazinon, chlorpyrifos and cyanazine) have now been significantly limited, and usage of alachlor was voluntarily reduced and largely replaced by a registered alternative.

The USGS report is based on analysis of data collected from 51 major river basins and aquifer systems across the Nation from Florida to the Pacific Northwest and including Hawaii and Alaska, plus a regional study in the High Plains aquifer system.

Although none of the USGS stream sampling sites were located at drinking-water intakes, a screening-level assessment was done by USGS to provide an initial perspective on the relevance of the pesticide concentrations to human health. USGS measurements were compared to EPA drinking-water standards and guidelines. Concentrations of individual pesticides were almost always lower than the standards and guidelines, representing less than 10 percent of the sampled stream sites and about 1 percent of domestic and public-supply wells.

However, pesticides may have substantially greater effects on aquatic ecosystems than on humans based on a screening-level comparison of USGS measurements to water-quality benchmarks for aquatic life and fish-eating wildlife. More than 80 percent of urban streams and more than 50 percent of agricultural streams had concentrations in water of at least one pesticide--mostly those in use during the study period--that exceeded a water-quality benchmark for aquatic life. Water-quality benchmarks are estimates of concentrations above which pesticides may have adverse effects on human health, aquatic life, or fish-eating wildlife.

Insecticides, particularly diazinon, chlorpyrifos, and malathion frequently exceeded aquatic-life benchmarks in urban streams. Most urban uses of diazinon and chlorpyrifos, such as on lawns and gardens, have been phased out since 2001 because of use restrictions imposed by the EPA. The USGS data indicate that concentrations of these pesticides may have been declining in some urban streams even before 2001--benchmark exceedences in urban streams were least frequent late in the study. A case study of diazinon shows declining concentrations in several urban streams in the Northeast during 1998-2004.

In agricultural streams, the pesticides chlorpyrifos, azinphos-methyl, p,p’-DDE, and alachlor were among those most often found at concentrations that may affect aquatic life, with each being most important in areas where its use on crops is or was greatest. According to senior author Robert Gilliom, however, "Pesticide use is constantly changing in response to such factors as regulations and market forces and findings from this decade-long study need to be examined in relation to changes in use during and after the study. For example, levels of the herbicide alachlor declined in streams in the Corn Belt (generally including Illinois, Indiana, Iowa, Nebraska, and Ohio, as well as parts of adjoining states) throughout the study period as its use on corn and soybeans declined, with no levels greater than its aquatic-life benchmark by the end of the study. In contrast, both the use and the levels of atrazine, the most heavily used herbicide in the Corn Belt region, remained relatively high throughout the study period."

In addition, DDT, dieldrin, and chlordane--organochlorine pesticide compounds that were no longer in use when the study began--were frequently detected in bed sediment and fish in urban and agricultural areas. Concentrations of these compounds in fish declined following reductions in their use during the 1960s and elimination of all uses in the 1970s and 1980s, and continue to slowly decline. Just as notable as the declines, however, is the finding that these persistent organochlorine pesticides still occur at levels greater than benchmarks for aquatic life and fish-eating wildlife in many urban and agricultural streams across the Nation.

The USGS study also reported that pesticides seldom occurred alone--but almost always as complex mixtures. Most stream samples and about half of the well samples contained two or more pesticides, and frequently more.

Gilliom explained that "The potential effects of contaminant mixtures on people, aquatic life, and fish-eating wildlife are still poorly understood and most toxicity information, as well as the water-quality benchmarks used in this study, has been developed for individual chemicals. The common occurrence of pesticide mixtures, particularly in streams, means that the total combined toxicity of pesticides in water, sediment, and fish may be greater than that of any single pesticide compound that is present. Studies of the effects of mixtures are still in the early stages, and it may take years for researchers to attain major advances in understanding the actual potential for effects. Our results indicate, however, that studies of mixtures should be a high priority."

A.B. Wade | EurekAlert!
Further information:
http://www.usgs.gov

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>