Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New volcano research moves closer to predicting eruptions

22.02.2006


Research into how volcanoes erupt led by Durham University’s Earth Sciences Department is taking volcanologists a step closer to being able to predict when and on what scale volcanoes will erupt.



In the three-year EU Erupt Project, funded by almost half a million euros of EU Framework 5 funding, scientists from seven European universities are working on four volcanoes. They have developed new techniques to examine what happens underground before a volcano erupts and how magma develops and have made a considerable breakthrough in dating past geophysical events that preceded eruptions. A key set of clues comes from the study of cores and rims on crystals which have grown from the magmas, which can be read like tree rings.

Using this new technique, volcanologists can now correlate data from traditional volcanology – the study of deposits from past volcanoes (or ‘volcanic autopsy’) to date previous eruptions, with geophysics – which offers a real time snapshot of state of a volcanic system. For example the team working on Vesuvius dated a magmatic event which appears to correspond to the occurrence of an earthquake 17 years before the volcano famously erupted in AD79. The importance of this is that for the first time volcanologists can set a timescale on the impact of geophysical activity on magma systems and interpret the link to volcanic eruptions or hazards.


Professor Jon Davidson, from Durham University and Principal Investigator on ERUPT said: “These new techniques are helping us build up profiles for different volcano types, which will help volcanologists around the world understand better how magma works, its composition – what makes it more volatile – how it is stored and how and when it is likely to cause an eruption.”

The EU ERUPT Project (European Research on Understanding Processes and Timescales of Magma Evolution in Volcanic Systems), involves scientists from seven European universities, selected for their diverse range of expertise in volcanology with experience working with volcanic systems all over the world. The other institutions involved in the ERUPT Project are the University of Florence, University of Goettingen, Vesuvius Observatory (Naples), University of Leeds, CSIC (Barcelona) and University College, Dublin.

The team chose four European volcanoes to study for the project that represented a broad range of types of volcanoes in terms of size, frequency and intensity of eruption, from Stromboli with frequent relatively gentle eruptions, to Teide and Vesuvius with medium scale eruptions to Campi Flegrei representing the larger end of the scale. The techniques include examining crystals, rock textures and exhumed magma chambers, dating rocks and crystals and determining the pressures and temperatures of crystal growth and exchange between magmas.

The results of this research have been presented to the Italian civil authorities and a number of papers have been published in peer-review journals such as Journal of Petrology on various aspects of the project.

Jane Budge | alfa
Further information:
http://www.durham.ac.uk/news

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>