Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellites see largest jet of particles created between Sun and Earth

13.01.2006


A flotilla of space-weather satellites – ESA’s Cluster and NASA’s ACE and Wind - observed for the first time steady large-scale jets of charged particles in the solar wind between the Sun and Earth.



When such huge jets of particles impact on Earth’s magnetic shield, they could cause powerful magnetic storms on our planet. Understanding the mechanism behind these phenomena - called ‘magnetic reconnection’ – is also fundamental to many explosive phenomena, such as solar flares, powerful gamma-ray bursts from ‘magnetars’ (dead stars noted for their extreme magnetic fields) and laboratory nuclear fusion.

Magnetic reconnection is a natural process by which the energy of magnetic field is converted into particle energy and by which, for instance, solar particles can penetrate through Earth’s magnetic shield, sometimes causing magnetic storms as well as beautiful ‘aurorae’, or polar lights.


Magnetic reconnection takes place when sheets of oppositely directed magnetic field get pressed together. In doing so, the sheets cross to form an X-shape that is then temporarily broken to form a new magnetic line geometry.

The creation of a different geometry induces jets of electrically charged particles and also allows solar material to pass through newly created ‘cracks’ in the previously impenetrable magnetic field configuration.

So far, magnetic reconnection events have been almost exclusively reported in Earth’s magnetosphere. This is the natural magnetic shield surrounding Earth. It is composed of magnetic field lines generated by our planet, and defends us from the continuous flow of charged particles that make up the solar wind by deflecting them away from Earth.

However, when the interplanetary magnetic field lines carried by the solar wind happen to be in the opposite orientation to Earth’s magnetic field lines, reconnection is triggered and solar material can break through Earth’s shield.

Previous reconnection events measured in Earth’s magnetosphere suggested that the phenomenon was intrinsically random and patchy in nature, extending not more than a few tens thousand kilometres.

However, a broader picture of magnetic reconnection emerged when six spacecraft – the four Cluster and the ACE and Wind satellites – were flying in the solar wind outside Earth’s magnetosphere, in sunward direction, on 2 February 2002.

During a time span of about two and a half hours, all spacecraft observed in sequence a single huge stream, or jet, of charged particles, up to 2.5 million kilometres (390 Earth radii) wide, caused by the largest reconnection event ever measured.

“If the observed reconnection were patchy, one or more spacecraft most likely would have not encountered an accelerated flow of particles,” says Tai Phan, from the University of California, Berkeley, USA, lead author of the results.

“Furthermore, patchy and random reconnection events would have resulted in different spacecraft detecting jets directed in different directions, which was not the case.”

The fact that the spacecraft detected the jet for more than two hours, also implies that the reconnection must have been almost steady over at least that timespan. Another 27 reconnection events of large magnitude – with the associated jets - were identified by ACE and Wind, four of which extended more than 100 Earth radii, or 650 000 kilometres.

Thanks to these additional data, scientists could conclude that reconnection in the solar wind is to be looked at as an extended and steady phenomenon.

Magnetic reconnection, responsible for transport of mass and energy across Earth’s magnetic defences, is a central issue in space physics. Consequences of this transport can be strong magnetic storms that have the potential to severely impair critical technology infrastructure.

Potential damage includes widespread power failures, pipeline corrosion, shutdown of cable systems, satellite failures, inaccurate GPS positioning and disturbed radio navigation.

Understanding magnetic reconnection is also fundamental when having to control magnetic fields and particles energy during nuclear experiments in laboratories. One of the keys to producing ‘clean’ nuclear energy (nuclear fusion) is making sure that reconnection phenomena do not take place, as they could cause powerful and dangerous jets of particles to be released uncontrolled.

“Only with co-ordinated measurements by spacecraft like Cluster, ACE and Wind can we probe the near-Earth space environment with unprecedented detail and in three dimensions,” continued Phan.

“This is the only natural laboratory were the physics of plasma and the magnetic phenomena that drive it can be studied in situ, paving the way to many applications,” he concluded.

Philippe Escoubet | alfa
Further information:
http://www.esa.int/esaSC/SEMAFQG23IE_index_0.html

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>