Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellites see largest jet of particles created between Sun and Earth

13.01.2006


A flotilla of space-weather satellites – ESA’s Cluster and NASA’s ACE and Wind - observed for the first time steady large-scale jets of charged particles in the solar wind between the Sun and Earth.



When such huge jets of particles impact on Earth’s magnetic shield, they could cause powerful magnetic storms on our planet. Understanding the mechanism behind these phenomena - called ‘magnetic reconnection’ – is also fundamental to many explosive phenomena, such as solar flares, powerful gamma-ray bursts from ‘magnetars’ (dead stars noted for their extreme magnetic fields) and laboratory nuclear fusion.

Magnetic reconnection is a natural process by which the energy of magnetic field is converted into particle energy and by which, for instance, solar particles can penetrate through Earth’s magnetic shield, sometimes causing magnetic storms as well as beautiful ‘aurorae’, or polar lights.


Magnetic reconnection takes place when sheets of oppositely directed magnetic field get pressed together. In doing so, the sheets cross to form an X-shape that is then temporarily broken to form a new magnetic line geometry.

The creation of a different geometry induces jets of electrically charged particles and also allows solar material to pass through newly created ‘cracks’ in the previously impenetrable magnetic field configuration.

So far, magnetic reconnection events have been almost exclusively reported in Earth’s magnetosphere. This is the natural magnetic shield surrounding Earth. It is composed of magnetic field lines generated by our planet, and defends us from the continuous flow of charged particles that make up the solar wind by deflecting them away from Earth.

However, when the interplanetary magnetic field lines carried by the solar wind happen to be in the opposite orientation to Earth’s magnetic field lines, reconnection is triggered and solar material can break through Earth’s shield.

Previous reconnection events measured in Earth’s magnetosphere suggested that the phenomenon was intrinsically random and patchy in nature, extending not more than a few tens thousand kilometres.

However, a broader picture of magnetic reconnection emerged when six spacecraft – the four Cluster and the ACE and Wind satellites – were flying in the solar wind outside Earth’s magnetosphere, in sunward direction, on 2 February 2002.

During a time span of about two and a half hours, all spacecraft observed in sequence a single huge stream, or jet, of charged particles, up to 2.5 million kilometres (390 Earth radii) wide, caused by the largest reconnection event ever measured.

“If the observed reconnection were patchy, one or more spacecraft most likely would have not encountered an accelerated flow of particles,” says Tai Phan, from the University of California, Berkeley, USA, lead author of the results.

“Furthermore, patchy and random reconnection events would have resulted in different spacecraft detecting jets directed in different directions, which was not the case.”

The fact that the spacecraft detected the jet for more than two hours, also implies that the reconnection must have been almost steady over at least that timespan. Another 27 reconnection events of large magnitude – with the associated jets - were identified by ACE and Wind, four of which extended more than 100 Earth radii, or 650 000 kilometres.

Thanks to these additional data, scientists could conclude that reconnection in the solar wind is to be looked at as an extended and steady phenomenon.

Magnetic reconnection, responsible for transport of mass and energy across Earth’s magnetic defences, is a central issue in space physics. Consequences of this transport can be strong magnetic storms that have the potential to severely impair critical technology infrastructure.

Potential damage includes widespread power failures, pipeline corrosion, shutdown of cable systems, satellite failures, inaccurate GPS positioning and disturbed radio navigation.

Understanding magnetic reconnection is also fundamental when having to control magnetic fields and particles energy during nuclear experiments in laboratories. One of the keys to producing ‘clean’ nuclear energy (nuclear fusion) is making sure that reconnection phenomena do not take place, as they could cause powerful and dangerous jets of particles to be released uncontrolled.

“Only with co-ordinated measurements by spacecraft like Cluster, ACE and Wind can we probe the near-Earth space environment with unprecedented detail and in three dimensions,” continued Phan.

“This is the only natural laboratory were the physics of plasma and the magnetic phenomena that drive it can be studied in situ, paving the way to many applications,” he concluded.

Philippe Escoubet | alfa
Further information:
http://www.esa.int/esaSC/SEMAFQG23IE_index_0.html

More articles from Earth Sciences:

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>