Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers confirm role of massive flood in climate change

10.01.2006


Climate modelers at the Goddard Institute for Space Studies (GISS) have succeeded in reproducing the climate changes caused by a massive freshwater pulse into the North Atlantic that occurred at the beginning of the current warm period 8,000 years ago. Their work is the first to consistently model the event and the first time that the model results have been validated by comparison to the record of climate proxies that scientists regularly use to study the Earth’s past.



"We only have one example of how the climate reacts to changes, the past," said Gavin A. Schmidt, a GISS researcher and co-author on the study. "If we’re going to accurately simulate the Earth’s future, we need to be able to replicate past events. This was a real test of the model’s skill."

The study was led by Allegra LeGrande, a graduate student in the department of earth and environmental sciences at Columbia University. The results appear in a paper being published in this week’s edition of the journal Proceedings of the National Academy of Sciences (PNAS).


The group used an atmosphere-ocean coupled climate model known as GISS Model E-R to simulate the climate impact of a massive freshwater flood into the North Atlantic that happened about 8,200 years ago after the end of the last Ice Age. As retreating glaciers opened a route for two ancient meltwater lakes known as Agassiz and Ojibway to suddenly and catastrophically drain from the middle of the North American continent.

At approximately the same time, climate records show that the Earth experienced its last abrupt climate shift. Scientists believe that the massive freshwater pulse interfered with the ocean’s overturning circulation, which distributes heat around the globe. According to the record of what are known as climate proxies, average air temperatures apparently dropped fell as much as several degrees in some areas of the Northern Hemisphere.

Climate researchers use these proxies--chemical signals locked in minerals and ice bubbles as well as pollen and other biological indicators--as indirect measures of temperature and precipitation patterns in the distant past. Because GISS Model E-R incorporates the response of these proxies in its output, the authors of the PNAS study were able to compare their results directly to the historical record.

The researchers prodded their model with a freshwater pulse equal to between 25 and 50 times the flow of the Amazon River in 12 model runs that took more than a year to complete. Although the simulations largely agreed with proxy records from North Atlantic sediment cores and Greenland ice cores, the team’s results showed that the flood had much milder effects around the globe than many people fear--including the dramatic shifts in climate depicted in the 2004 movie ’The Day After Tomorrow’.

According to the model, temperatures in the North Atlantic and Greenland showed the largest decrease, with slightly less cooling over parts of North America and Europe. The rest of the northern hemisphere, however, showed very little effect, and temperatures in the southern hemisphere remained largely unchanged. Moreover, ocean circulation, which initially dropped by half after simulated flood, appeared to rebound within 50 to 150 years.

"This was probably the closest thing to a ’Day After Tomorrow’ scenario that we could model," said LeGrande. "The flood we looked at was even larger than anything that could happen today. Still, it’s important for us to study because the real thing occurred during a period when conditions were not that much different from the present day."

The GISS climate model is also being used for the latest simulations by the Intergovernmental Panel on Climate Change (IPCC) to simulate the Earth’s present and future climate. "Hopefully, successful simulations of the past such as this will increase confidence in the validity of model projections," said Schmidt.

The study was funded by NASA, National Defense Science and Engineering Graduate Fellowship, and the National Science Foundation.

Ken Kostel | EurekAlert!
Further information:
http://www.ei.columbia.edu
http://www.earth.columbia.edu
http://www.giss.nasa.gov

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>