Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers confirm role of massive flood in climate change

10.01.2006


Climate modelers at the Goddard Institute for Space Studies (GISS) have succeeded in reproducing the climate changes caused by a massive freshwater pulse into the North Atlantic that occurred at the beginning of the current warm period 8,000 years ago. Their work is the first to consistently model the event and the first time that the model results have been validated by comparison to the record of climate proxies that scientists regularly use to study the Earth’s past.



"We only have one example of how the climate reacts to changes, the past," said Gavin A. Schmidt, a GISS researcher and co-author on the study. "If we’re going to accurately simulate the Earth’s future, we need to be able to replicate past events. This was a real test of the model’s skill."

The study was led by Allegra LeGrande, a graduate student in the department of earth and environmental sciences at Columbia University. The results appear in a paper being published in this week’s edition of the journal Proceedings of the National Academy of Sciences (PNAS).


The group used an atmosphere-ocean coupled climate model known as GISS Model E-R to simulate the climate impact of a massive freshwater flood into the North Atlantic that happened about 8,200 years ago after the end of the last Ice Age. As retreating glaciers opened a route for two ancient meltwater lakes known as Agassiz and Ojibway to suddenly and catastrophically drain from the middle of the North American continent.

At approximately the same time, climate records show that the Earth experienced its last abrupt climate shift. Scientists believe that the massive freshwater pulse interfered with the ocean’s overturning circulation, which distributes heat around the globe. According to the record of what are known as climate proxies, average air temperatures apparently dropped fell as much as several degrees in some areas of the Northern Hemisphere.

Climate researchers use these proxies--chemical signals locked in minerals and ice bubbles as well as pollen and other biological indicators--as indirect measures of temperature and precipitation patterns in the distant past. Because GISS Model E-R incorporates the response of these proxies in its output, the authors of the PNAS study were able to compare their results directly to the historical record.

The researchers prodded their model with a freshwater pulse equal to between 25 and 50 times the flow of the Amazon River in 12 model runs that took more than a year to complete. Although the simulations largely agreed with proxy records from North Atlantic sediment cores and Greenland ice cores, the team’s results showed that the flood had much milder effects around the globe than many people fear--including the dramatic shifts in climate depicted in the 2004 movie ’The Day After Tomorrow’.

According to the model, temperatures in the North Atlantic and Greenland showed the largest decrease, with slightly less cooling over parts of North America and Europe. The rest of the northern hemisphere, however, showed very little effect, and temperatures in the southern hemisphere remained largely unchanged. Moreover, ocean circulation, which initially dropped by half after simulated flood, appeared to rebound within 50 to 150 years.

"This was probably the closest thing to a ’Day After Tomorrow’ scenario that we could model," said LeGrande. "The flood we looked at was even larger than anything that could happen today. Still, it’s important for us to study because the real thing occurred during a period when conditions were not that much different from the present day."

The GISS climate model is also being used for the latest simulations by the Intergovernmental Panel on Climate Change (IPCC) to simulate the Earth’s present and future climate. "Hopefully, successful simulations of the past such as this will increase confidence in the validity of model projections," said Schmidt.

The study was funded by NASA, National Defense Science and Engineering Graduate Fellowship, and the National Science Foundation.

Ken Kostel | EurekAlert!
Further information:
http://www.ei.columbia.edu
http://www.earth.columbia.edu
http://www.giss.nasa.gov

More articles from Earth Sciences:

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>