Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rerouting of Major Rivers in Asia Provides Clues to Mountains of the Past

27.12.2005


Scientists have long recognized that the collision of the earth’s great crustal plates generates mountain ranges and other features of the Earth’s surface. Yet the link between mountain uplift and river drainage patterns has been uncertain. Now scientists have used laboratory techniques and sediment cores from the ocean to help explain the how rivers have changed course over millions of years.


Shaded relief map of the Arabian Sea and surrounding land masses, showing the location of the drill sites and seismic profiles used in the study and major tributaries of the Indus River. (Figure by Peter Clift and Jerzy Blusztajn)


Proposed drainage pattern of the Indus River before 5 million years ago (right) and during modern times (left). Drainage capture, or diversion of a river pattern, occurs when a river captures or intercepts other rivers. (Figure by Peter Clift and Jerzy Blusztajn)



In a report published in the December 15 issue of Nature, scientists Peter Clift of the University of Aberdeen in the United Kingdom and Jerzy Blusztajn of the Woods Hole Oceanographic Institution reconstructed the erosional discharge from the Indus River over the past 30 million years and found that the source of those sediments changed five million years ago. Until then, Indus River sediments were produced by erosion of mountains to the north of the collision zone between India and Asia, but five million years ago much more sediment starting coming from the southern Himalayas, part of the deformed Indian plate.

Clift and Blusztajn believe the change is caused by a rerouting of the major rivers of the Punjab region into the Indus River, where they flow into the Arabian Sea west of India. Previously these rivers flowed east and joined the Ganges River before reaching the Bay of Bengal, east of India.


The erosional record in the Arabian Sea is at the center of debates concerning the nature of continent-ocean interactions, and how climate, tectonic activity and erosion are linked. In order to interpret this record, scientists need to understand what sediment is being delivered by the modern Indus River to the coast and transported to the deep sea.

The researchers reconstructed the long-term discharge from the Indus River using both new and previously published data to estimate continental erosion rates. Although some sediment from the rivers stays onshore, about two thirds of the sediment is preserved offshore. Using a series of sediment samples from scientific and industrial drill sites across the Arabian Sea, the researchers reconstructed changing continental erosion rates through time. The technique may enable scientists to eventually date the uplift of the Tibetan Plateau

By studying sediments accumulated in the Arabian Sea, the researchers found strong evidence for a significant change in the Himalayan river systems in the recent geologic past. The sediment in the Arabian Sea forms one of the largest areas of sediment deposition in the oceans and is an important repository of information on the uplift and erosion of the western Himalaya.

“This is the first time such a major sediment capture event has been dated,” said Blusztajn, a researcher in the WHOI Geology and Geophysics Department. “ It has been proposed than such huge events occurred in East Asia, but so far the ages of the capture events there remain unknown. The new isotope stratigraphy provides strong evidence for a major change in the geometry of the western Himalayan river system after five million years ago, probably caused by a change in the mountains.”

Earlier studies by Clift, a visiting scientist at WHOI, and others have shown differences in “isotopic fingerprints” between ancient and modern Indus River sediments.

The new findings suggest the ancient Punjabi rivers were connected to the Ganges and not the Indus River, and that the rivers were diverted or rerouted from their original southeasterly flow by the uplift of mountain ranges in modern day Pakistan. The majority of material contributing to the Indus River now is coming from four large rivers in the Punjab: the Sutlej, Ravi, Chennab and Jellum rivers, forming the “bread basket” of northern India and Pakistan.

“This study highlights the need to account for sediment capture events like this in interpreting erosion records from the marine environment,” Blusztajn said. “Studying modern river sediments and comparing them with marine sediment allows the volume and composition of inputs from different sources to be quantified. If the marine sedimentation process can be related to the modern mountains and drainage system, we may be able to use ancient sediments to reconstruct what the mountains looked like in the geologic past.”

Shelley Dawicki | EurekAlert!
Further information:
http://www.whio.edu

More articles from Earth Sciences:

nachricht Sea ice extent sinks to record lows at both poles
23.03.2017 | NASA/Goddard Space Flight Center

nachricht Less radiation in inner Van Allen belt than previously believed
21.03.2017 | DOE/Los Alamos National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>