Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Santa Barbara researcher tapped by Europeans for design of instrument to test soil on Mars

13.12.2005


The European Space Agency (ESA) announced today support of a new program that will include development of an instrument for testing deep soil samples on Mars in a European mission called ExoMars. A researcher at the University of California, Santa Barbara will direct the development of the instrument.



"We are very excited about this," said Luann Becker, research scientist with the Institute of Crustal Studies at UC Santa Barbara. "It’s a once-in-a-lifetime opportunity." Testing by the two NASA rovers that are currently operating on Mars has spurred interest in developing different, new, and highly-sensitive instruments to search for present or past life on Mars. The ExoMars rover will contain a drill that can reach soil samples up to two meters under the Martian surface in search of extinct or extant life.

Becker, trained as an oceanographer and geochemist, is deeply involved in the study of the origin, evolution and distribution of life in the universe, a field known as exobiology. She is known for her development of a theory about a mass extinction (much earlier than that of the dinosaurs) and her team’s finding of evidence of the impact of a meteor 250 million years ago in an area off the coast of present-day Australia. The impact apparently ushered in a period called the "Great Dying," the largest extinction event in the history of life on Earth, when 90 percent of marine life and 80 percent of life on land became extinct.


She anticipates that the American contribution to the Molecular Organic Molecule Analyzer (MOMA) development by the European Space Agency (ESA) will be funded by NASA. MOMA will be included as part of the ExoMars mission to Mars in 2011.

The discovery in 1996 of organic molecules enclosed in a meteorite –– that may be of Martian origin –– revived interest in the study of Martian soil. One entire category of meteorites on Earth has been identified to be of possible Martian origin because gases trapped in them match the composition of the Martian atmosphere.

The opportunity to work with the Europeans makes the project especially appealing to Becker. "The Europeans are coming together to support this mission," said Becker. "U.S. support is also required. It’s a very, very unique opportunity. We all have a unified goal."

Her team includes many European scientists as well as two co-principal investigators from Johns Hopkins University. The Americans are: William B. Brinckerhoff from the Applied Physics Laboratory, and Robert J. Cotter of the Johns Hopkins School of Medicine’s Department of Pharmacology and Molecular Sciences. The instrument will be developed in the Applied Physics and School of Medicine laboratories in affiliation with Johns Hopkins University.

The decision about the mission came last week when ministers from the 17 ESA member states gathered in Berlin for an ESA council meeting. There they decided to pursue the overall core program of "Aurora," with its first Martian robotic exploration mission, ExoMars. Scheduled to be launched from Kourou, French Guiana, the ExoMars mission will deploy a highly mobile rover with a suite of exobiology instruments.

The ExoMars mission was conceived as part of the Aurora preparatory program activities that were started in 2002 with the support of twelve participating nations: Austria, Belgium, France, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland, the United Kingdom, and Canada.

In Berlin, 14 countries agreed to subscribe to the ExoMars mission. The 12 countries from the preparatory phase were joined by Denmark and Norway. Further contributions are still expected in the coming months. As far as the financial shares in the program are concerned, Italy has confirmed its leading role, followed by the United Kingdom, France, and Germany. These proportions will also be reflected in the selection of the industrial consortium that ESA will task to build the first European rover for the exploration of Mars, along with a carrier and a descent module.

Decisions about the ExoMars spacecraft will be finalized in the next few months, with the aim of maximizing the mission’s scientific return. Subject to the availability of national funding for their research, scientists from all states participating in the Aurora program are represented in the initial selection of instruments. The U.S. is included through the MOMA and one other organic detection instrument. The lead American scientist on the other organic detection instrument is Jeffrey L.Bada, professor at the Scripps Institute of Oceanography, University of California, San Diego.

Together with the ExoMars mission, the other element of the Aurora Program, the so-called "Core Activities," were also approved in Berlin. The approval will allow for preparation for further exploration missions beyond ExoMars, such as the Mars Sample Return Mission in which samples will be brought back from Mars. ESA will continue the development of exploration-related technologies and capabilities, and develop a roadmap to raise awareness of the European involvement in space science activities.

Gail Gallessich | EurekAlert!
Further information:
http://www.ia.ucsb.edu

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>