Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Glacial pace of erosion was not so slow, new technique shows


Glaciers, rivers and shifting tectonic plates have shaped mountains over millions of years, but earth scientists have struggled to understand the relative roles of these forces and the rates at which they work.

Now, using a new technique, researchers at the University of Michigan, California Institute of Technology and Occidental College have documented how fast glaciers eroded the spectacular mountain topography of the Coast Mountains of British Columbia.

Their work is described in the Dec.9 issue of the journal Science.

U-M assistant professor of geological sciences Todd Ehlers has been working in a remote region of the Coast Mountains for the past three years, studying rates of glacial erosion and topographic change. Using a new geochemical tool developed by the Caltech researchers, he and his collaborators were able to quantify the rates and magnitude of glacial erosion across a major valley. They found that glaciers radically altered the landscape around 1.8 million years ago, about the time that Earth began to experience a number of ice ages.

The erosion rates documented in the study suggest that glaciers eroded the mountains six times faster than rivers and landslides had before glaciation began. The researchers also found that glaciers scraped at least 2 kilometers (about 1.2 miles) of rock from the mountains.

"These results are exciting," Ehlers said, "because they clearly document that glaciers are the most efficient method for sculpting the topography of the range. They also demonstrate the utility of a new geochemical tool that can be applied to study erosion in other mountain ranges."

The study relied on a technique called helium-helium thermochronometry, developed by Caltech’s Ken Farley and his former student David Shuster, now at Berkeley Geochronology Center in Berkeley, California. "It’s an unwieldy name, but it gives us a new way to study the rate at which rocks approached Earth’s surface in the past," Shuster said.

The new technique rests on three facts: one, that rocks on the surface have often come from beneath the surface; two, that the ground gets steadily warmer as depth increases; and three, that helium leaks out of a warm rock faster than a cold one. By determining how fast the helium leaked out of a rock, it’s also possible to determine how fast the rock cooled and, ultimately, how deeply it was buried, as well as when and how fast it got uncovered.

The team showed that the cooling of the rock happened very quickly and that the entire valley was carved out in about 300,000 years.

"We can say that the glacier was ripping out a huge amount of material and dumping it into the ocean," Farley said. "And rather than taking evidence from a single instant, we can for the first time see an integral of hundreds of thousands of years. So this is a new way to get at the rate at which glaciers do their work."

Why the intense erosion occurred 1.8 million years ago is not `well understood, Shuster said, "but it seems to coincide with some very interesting changes that took place in Earth’s climate system at that time."

In addition to Ehlers, Farley and Shuster, Margaret Rusmore, a geology professor at Occidental College in Los Angeles, was a coauthor on the paper. The research was supported by grants from the National Science Foundation.

Nancy Ross-Flanigan | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Thawing permafrost produces more methane than expected
20.03.2018 | GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre

nachricht Wandering greenhouse gas
16.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>