Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prelude to an Earthquake?

09.12.2005


Berkeley Lab Scientist Studies Possible Precursors in Micro-quakes


A Berkeley Lab scientist has identified possible precursors to two recent California earthquakes.



A geophysicist from the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) has identified possible seismic precursors to two recent California earthquakes, including the 1989 Loma Prieta earthquake that wreaked havoc throughout the Bay Area.

After sifting through seismic data from the two quakes, Valeri Korneev found a spike in the number of micro-earthquakes followed by a period of relative calm in the crust surrounding the quakes’ epicenters — months before the quakes occurred. Although more work needs to be conducted to determine whether other large quakes are foreshadowed by a similar rise and subsequent decline in small-magnitude tremors, Korneev’s analysis suggests that these peaks may be indicative of the total set of geological stresses that affect the timing and location of large earthquakes. Understanding this total stress picture may eventually make it be possible to predict destructive earthquakes within a much shorter time frame than currently possible.


“Peaks in seismic activity in the crust surrounding a fault could help signal the arrival of large earthquakes,” says Korneev of Berkeley Lab’s Earth Sciences Division. “These peaks may be a good mid-term precursor and allow authorities to declare alerts several months before earthquakes.”

He will present his research Dec. 9 at the American Geophysical Union’s Fall meeting in San Francisco.

Predicting the location and date of impending earthquakes has so far remained elusive. Instead, scientists rely on earthquake forecasts, which are statistical tools that offer the probability of a quake occurring within a certain time frame. These forecasts are largely based on the seismic history of known fault lines. For example, the U.S. Geological Survey’s official seismic risk assessment gives a 27 percent chance that a magnitude 7.0 earthquake will occur on the Bay Area’s Hayward Fault sometime in the next 30 years.

“Such long-term statistical forecasts, though useful to government planners, are not effective for taking near-term, damage-minimizing action,” says Korneev. “We are not able to stay alert every day.”

But the prospect of more precise predictions has been hindered by a lack of detectable changes in a fault’s behavior prior to a quake. It’s as if some destructive earthquakes occur out of the blue, completely unannounced.

Then, in 2004, a magnitude 6.0 quake rattled the town of Parkfield, California, also known as the seismology capital of the world. Here, where the San Andreas Fault cuts through central California, a magnitude 6.0 quake has occurred roughly every 22 years for about the last 100 years. The 2004 quake happened after a 38-year lull, and geologists were ready with an extensive network of instruments and boreholes that record every seismic hiccup in the area.

Soon after the quake, scientists pored over the network’s data to determine if the San Andreas Fault had dropped any clues that a quake was imminent. The first reports failed to find anything unusual. The few years preceding the quake were marked by the San Andreas Fault’s typical restlessness. There was no ominous build-up or calm before the storm, just a steady stream of normal data.

Korneev, however, decided to exclude from his analysis those tremors that occurred directly along the narrow portion of the San Andreas Fault that ruptured during the quake. Instead, he only included seismic activity that occurred along the fault’s flanks. According to Korneev, earthquakes directly within the creeping or moving portion of the fault zone were excluded because they manifest stress-release processes rather than stress accumulation.

Minus the data from the fault-zone quakes, his new analysis revealed a possible harbinger. He found a sharp increase in seismic activity that started one year before the 2004 quake and peaked four to six months before the quake. This spike was followed by a steady decrease in activity during the last few months leading up to the quake.

Inspired by this discovery, Korneev conducted a similar analysis of the seismic activity that preceded the 1989 magnitude 7.0 Loma Prieta earthquake, which was also sparked when a portion of the San Andreas Fault shifted. He focused his attention on the area to the west of Hayward Fault zone and the other seismically active areas adjacent to the epicenter. In the two months prior to the Oct. 17 quake, seismic activity increased to about eight times above normal levels. This peak was followed by a decrease in activity leading up to the powerful earthquake.

Korneev interprets the observed increase in seismic activity prior to the large quakes as a signature of the escalating stress level in the surrounding crust. He attributes the peak and subsequent reduction in seismic activity to damage-induced rock softening processes.

“Peaks in seismicity occurring several months before two recent large San Andreas Fault quakes indicate that they are good candidates for earthquake prediction studies,” says Korneev. “The precursor is an increase in small magnitude earthquakes in the crust surrounding the impending quake’s epicenter. This could give seismologists a clue as to what to look for when monitoring fault zones.”

In the future, Korneev would like to determine whether other well-studied large earthquakes in California were also prefaced by this phenomenon, which he calls microseismic emission precursors. He would also like to begin monitoring the seismic activity surrounding the Hayward Fault in California, which is due for a major earthquake.

Data processing for this research was conducted at Berkeley Lab’s Center for Computational Seismology.

Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California.

Dan Krotz | EurekAlert!
Further information:
http:// www.lbl.gov

More articles from Earth Sciences:

nachricht Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe
26.05.2017 | Oregon State University

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>