Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First few seconds of earthquake rupture provides data for distant shake warnings

10.11.2005


System can provide tens of seconds of warning about impending ground motion



A University of California, Berkeley, seismologist has discovered a way to provide seconds to tens of seconds of advance warning about impending ground shaking from an earthquake.

While a few seconds may not sound like much, it is enough time for school children to dive under their desks, gas and electric companies to shut down or isolate their systems, phone companies to reroute traffic, airports to halt takeoffs and landings, and emergency providers to pinpoint probable trouble areas. Such actions can save lives and money.


An early warning system like this is possible thanks to the work of Richard Allen, UC Berkeley assistant professor of earth and planetary science, who in the last five years has demonstrated that within a few seconds of an earthquake rupture, he can predict the total magnitude of the quake and its destructive potential. In San Francisco, for example, Allen estimates that it’s likely the city could receive 20 seconds’ warning of an impending temblor.

"We can determine the magnitude within a couple of seconds of initiation of rupture and predict the ground motion from seconds to tens of seconds before it’s felt," Allen said. He and his colleagues are now testing a system, ElarmS, that would make these predictions, and the researchers are working with the U.S. Geological Survey (USGS) to determine how accurate these warnings would be.

Allen and coauthor Erik L. Olson, a former graduate student at the University of Wisconsin, Madison, published their data on early earthquake ground motion predictions in the Nov. 10 issue of Nature.

Seismologists, especially those in the United States, have become increasingly pessimistic about being able to predict earthquakes. Experiments at the intensively monitored Parkfield, Calif., site have dampened enthusiasm that earthquake ruptures could be predicted hours or days before they happen. To reduce loss of life and property, earthquake-prone regions generally rely on a combination of advance preparation and post-earthquake assessment and notification between five and 10 minutes after a quake.

Allen’s early warnings come after a quake rupture has already begun but before the shaking is felt tens of miles from the epicenter.

San Francisco, for example, sits about midway along the northern half of the 800-mile San Andreas fault. If a rupture occurs at the extreme northern end, it could take 80 seconds, traveling nearly 2 miles per second, to reach the city. An early warning system could provide a critical buffer for residents, businesses and emergency responders, even if the time isn’t sufficient to evacuate a building.

The early warning information also would feed directly into the new active-response building designs that change the mechanical properties of a structure to let it ride out shaking and minimize damage both inside and out. Active response buildings are already operational in Japan, Allen said.

"That is our long-term goal, to have the building feel the earthquake, not the occupants," Allen said.

Two years ago, while at the University of Wisconsin, Allen reported differences in the frequency of seismic signals emanating from small and medium earthquakes during the first four seconds of the rupture, with the larger quakes showing lower frequency signals than the smaller quakes. The signal is part of the primary wave, or P wave, that is the first, though least destructive, wave to arrive after a rupture. Most people experience the P wave, which is a pressure wave that travels through rock like sound through air, as a jolt.

This P wave is followed by a secondary wave, or S wave, that shears the ground back and forth and up and down. Shortly after, more destructive surface waves arrive that jerk the ground sideways and later roll in like ocean waves.

In the current study, Allen shows that the relationship between P wave frequency and the total magnitude of the quake holds for major quakes, up to magnitude 8 and higher, as well as for medium and small quakes. Based on the correlation, he can predict the total magnitude of the quake to within 1 magnitude, and for a specific area, like the San Andreas Fault, to within half a magnitude. Magnitude is a measure of the total area that ruptures underground and the average amount of slip along the rupture. A half a magnitude amounts to a factor of 3 difference in ground motion.

"Most seismologists are surprised, and frequently skeptical, that you can predict the magnitude of an earthquake before it has ended, but this is telling us that there is something very different from what we thought about the physics of the processes involved in a rupture," Allen said.

Allen’s findings conflict with the current model of earthquake rupture. The "cascade" model assumes that earthquake faults are made up of lots of different-sized patches, each under some degree of stress. When one of the patches is stressed enough to slip, the slip propagates to adjacent patches, which rupture in turn like falling dominoes. The rupture stops only when the stress propagating along the fault zone reaches a patch that is too solidly locked to slip.

Inherent in this model is the idea that the initiating rupture is the same for big and small quakes. Allen’s findings suggest this is wrong. Instead, the rupture is different for large and small quakes from the beginning, and the initial rupture contains information that can be used to predict the final size.

He proposes that if the initial rupture generates a large "slip pulse" that travels continuously in all directions across the fault plane, the pulse can supply the necessary energy to propagate through patches that would not otherwise have ruptured. Only when the energy in the pulse drops to a level insufficient to overcome the grip of rock on rock does the rupture stop.

"If the rupture pulse initiates with a large slip, it is more likely to evolve into a large earthquake," he and Olson wrote in their report.

Allen’s demonstration that this observation holds in earthquakes around the world, from California to Taiwan and Japan, provides a solid basis for constructing an early warning system. Once the magnitude of the quake has been estimated, computers can predict areas of serious ground shaking based on an understanding of a particular fault. Within five seconds, warnings could be sent to cities in the areas calculated to expect damaging ground motion.

Because humans couldn’t respond fast enough, Allen said, these warnings would have to rely on computers programmed to respond to quakes of a certain magnitude.

"This allows people to get information about an event before the ground starts shaking and the system goes down," he said.

The ElarmS system also could warn rescue and clean-up personnel of aftershocks, which can cause collapse of unstable debris.

As the rupture proceeds, Allen said, analysis of seismic waves can refine magnitude and ground motion estimates, finally merging into the standard shake map typically produced within minutes of the end of an earthquake.

"We’re at the stage where we need to test the accuracy of the system, which we’re now doing," Allen said. "Next, we will determine whether the telemetry is fast enough to get data to us within seconds of a rupture."

Robert Sanders | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Earth Sciences:

nachricht Colorado River's connection with the ocean was a punctuated affair
16.11.2017 | University of Oregon

nachricht Researchers create largest, longest multiphysics earthquake simulation to date
14.11.2017 | Gauss Centre for Supercomputing

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>