Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First few seconds of earthquake rupture provides data for distant shake warnings

10.11.2005


System can provide tens of seconds of warning about impending ground motion



A University of California, Berkeley, seismologist has discovered a way to provide seconds to tens of seconds of advance warning about impending ground shaking from an earthquake.

While a few seconds may not sound like much, it is enough time for school children to dive under their desks, gas and electric companies to shut down or isolate their systems, phone companies to reroute traffic, airports to halt takeoffs and landings, and emergency providers to pinpoint probable trouble areas. Such actions can save lives and money.


An early warning system like this is possible thanks to the work of Richard Allen, UC Berkeley assistant professor of earth and planetary science, who in the last five years has demonstrated that within a few seconds of an earthquake rupture, he can predict the total magnitude of the quake and its destructive potential. In San Francisco, for example, Allen estimates that it’s likely the city could receive 20 seconds’ warning of an impending temblor.

"We can determine the magnitude within a couple of seconds of initiation of rupture and predict the ground motion from seconds to tens of seconds before it’s felt," Allen said. He and his colleagues are now testing a system, ElarmS, that would make these predictions, and the researchers are working with the U.S. Geological Survey (USGS) to determine how accurate these warnings would be.

Allen and coauthor Erik L. Olson, a former graduate student at the University of Wisconsin, Madison, published their data on early earthquake ground motion predictions in the Nov. 10 issue of Nature.

Seismologists, especially those in the United States, have become increasingly pessimistic about being able to predict earthquakes. Experiments at the intensively monitored Parkfield, Calif., site have dampened enthusiasm that earthquake ruptures could be predicted hours or days before they happen. To reduce loss of life and property, earthquake-prone regions generally rely on a combination of advance preparation and post-earthquake assessment and notification between five and 10 minutes after a quake.

Allen’s early warnings come after a quake rupture has already begun but before the shaking is felt tens of miles from the epicenter.

San Francisco, for example, sits about midway along the northern half of the 800-mile San Andreas fault. If a rupture occurs at the extreme northern end, it could take 80 seconds, traveling nearly 2 miles per second, to reach the city. An early warning system could provide a critical buffer for residents, businesses and emergency responders, even if the time isn’t sufficient to evacuate a building.

The early warning information also would feed directly into the new active-response building designs that change the mechanical properties of a structure to let it ride out shaking and minimize damage both inside and out. Active response buildings are already operational in Japan, Allen said.

"That is our long-term goal, to have the building feel the earthquake, not the occupants," Allen said.

Two years ago, while at the University of Wisconsin, Allen reported differences in the frequency of seismic signals emanating from small and medium earthquakes during the first four seconds of the rupture, with the larger quakes showing lower frequency signals than the smaller quakes. The signal is part of the primary wave, or P wave, that is the first, though least destructive, wave to arrive after a rupture. Most people experience the P wave, which is a pressure wave that travels through rock like sound through air, as a jolt.

This P wave is followed by a secondary wave, or S wave, that shears the ground back and forth and up and down. Shortly after, more destructive surface waves arrive that jerk the ground sideways and later roll in like ocean waves.

In the current study, Allen shows that the relationship between P wave frequency and the total magnitude of the quake holds for major quakes, up to magnitude 8 and higher, as well as for medium and small quakes. Based on the correlation, he can predict the total magnitude of the quake to within 1 magnitude, and for a specific area, like the San Andreas Fault, to within half a magnitude. Magnitude is a measure of the total area that ruptures underground and the average amount of slip along the rupture. A half a magnitude amounts to a factor of 3 difference in ground motion.

"Most seismologists are surprised, and frequently skeptical, that you can predict the magnitude of an earthquake before it has ended, but this is telling us that there is something very different from what we thought about the physics of the processes involved in a rupture," Allen said.

Allen’s findings conflict with the current model of earthquake rupture. The "cascade" model assumes that earthquake faults are made up of lots of different-sized patches, each under some degree of stress. When one of the patches is stressed enough to slip, the slip propagates to adjacent patches, which rupture in turn like falling dominoes. The rupture stops only when the stress propagating along the fault zone reaches a patch that is too solidly locked to slip.

Inherent in this model is the idea that the initiating rupture is the same for big and small quakes. Allen’s findings suggest this is wrong. Instead, the rupture is different for large and small quakes from the beginning, and the initial rupture contains information that can be used to predict the final size.

He proposes that if the initial rupture generates a large "slip pulse" that travels continuously in all directions across the fault plane, the pulse can supply the necessary energy to propagate through patches that would not otherwise have ruptured. Only when the energy in the pulse drops to a level insufficient to overcome the grip of rock on rock does the rupture stop.

"If the rupture pulse initiates with a large slip, it is more likely to evolve into a large earthquake," he and Olson wrote in their report.

Allen’s demonstration that this observation holds in earthquakes around the world, from California to Taiwan and Japan, provides a solid basis for constructing an early warning system. Once the magnitude of the quake has been estimated, computers can predict areas of serious ground shaking based on an understanding of a particular fault. Within five seconds, warnings could be sent to cities in the areas calculated to expect damaging ground motion.

Because humans couldn’t respond fast enough, Allen said, these warnings would have to rely on computers programmed to respond to quakes of a certain magnitude.

"This allows people to get information about an event before the ground starts shaking and the system goes down," he said.

The ElarmS system also could warn rescue and clean-up personnel of aftershocks, which can cause collapse of unstable debris.

As the rupture proceeds, Allen said, analysis of seismic waves can refine magnitude and ground motion estimates, finally merging into the standard shake map typically produced within minutes of the end of an earthquake.

"We’re at the stage where we need to test the accuracy of the system, which we’re now doing," Allen said. "Next, we will determine whether the telemetry is fast enough to get data to us within seconds of a rupture."

Robert Sanders | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>