Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Water vapor feedback is rapidly warming Europe


A new report indicates that the vast majority of the rapid temperature increase recently observed in Europe is likely due to an unexpected greenhouse gas: water vapor. Elevated surface temperatures due to other greenhouse gases have enhanced water evaporation and contributed to a cycle that stimulates further surface temperature increases, according to a report in Geophysical Research Letters. The research could help to answer a long-debated Earth science question about whether the water cycle could strongly enhance greenhouse warming.

Swiss researchers examined surface radiation measurements from 1995 to 2002 over the Alps in Central Europe and show strongly increasing total surface absorbed radiation, concurrent with rapidly increasing temperature. The authors, led by Rolf Philipona of the World Radiation Center in Davos, show experimentally that 70 percent of the rapid temperature increase is very likely caused by water vapor feedback. They indicate that remaining 30 percent is likely due to increasing manmade greenhouse gases.

The researchers analyzed temperature and humidity changes over Europe, which jumped nearly three times above the levels predicted by general circulation models in the past two decades. They provide observational evidence that large-scale weather patterns in Europe influence annual average temperatures uniformly, but weakly. They suggest that their combined observations indicate that the region is experiencing an increasing greenhouse effect and that the dominant part of the rising heat emitted from the Earth’s atmosphere (longwave radiation) is due to water vapor increase.

After examining increased cloud cover to the north of the Alps and decreased cover to the south, the authors report that both sides of the mountain range experienced clear warming over the 1995-2002 period. While clouds are not entirely responsible for the warming, such findings correspond with previous cloud investigations showing that for midlatitudes, annual mean cloud cooling from the Sun (shortwave radiation) is roughly canceled by cloud warming caused by heat emitted by longwave radiation from the surface.

The strong increase of longwave radiation is shown in the study to be due to increasing cloudiness, rising temperature, rising water vapor, and above all to long-lived manmade greenhouse gases. The scientists’ radiation measurements in the Alps show that the various inputs, or forcings, can be separated and that manmade greenhouse forcing is measurable at Earth’s surface. Above all, their measurements demonstrate strong water vapor feedback that rapidly warms Central and Northeastern Europe, where sufficient water is available from plants and the surface, known as evapotranspiration.

Harvey Leifert | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Wandering greenhouse gas
16.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Unique Insights into the Antarctic Ice Shelf System
14.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

TIB’s Visual Analytics Research Group to develop methods for person detection and visualisation

19.03.2018 | Information Technology

Tiny implants for cells are functional in vivo

19.03.2018 | Interdisciplinary Research

Science & Research
Overview of more VideoLinks >>>