Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Heavy Rains Can Make More Dust in Earth’s Driest Spots


Typically we think of rainfall as cleaning the air by removing dust as it falls through the atmosphere and helping plants grow that protect and hold the soil. But a new NASA-funded study looking at some of the world’s dustiest areas shows that heavy downpours can eventually lead to more dust being released into the atmosphere.

Typically drought reduces vegetation growth, increasing soil vulnerability to wind erosion, while rainfall tends to have the opposite effect. In the new study researchers examining 14 of the Earth’s dustiest regions found that in some regions, heavy rainfall and flooding leave behind sediments that include fine grain size particles that eventually get carried by winds in successive dry periods, increasing the amount of airborne dust, or emissions, released a year or more later. This is especially common in the Tigris-Euphrates Basin and in the Zone of Chotts in North Africa.

The research also confirms that dust emissions from a specific region can vary considerably from season-to-season, or year to year, and are largely dependent on climate patterns.

In some regions, "like in Oman and Saudi Arabia, where heavy rains combine with monsoon-driven winds, precipitation has a more immediate impact and appears to erode the surface crust, or top layer of soil, increasing dust emissions within just a few weeks," said Charles Zender of the Department of Earth System Science, University of California-Irvine, and lead author of the study.

Other areas of the world, including the western United States, the Great Salt Lake in Utah, eastern Sahel in Africa, and Lake Eyre basin Australia, show a more typical response, as precipitation and vegetation lessens the amount of dust released into the atmosphere. In these regions, rain and ground water help form soil layers that diminish the ability of wind to erode and carry soil particles.

Tiny dust particles have a significant influence on climate and weather patterns around the world by reflecting and absorbing sunlight and by serving as a nucleus or surface for water vapor, so that clouds can grow and form precipitation.

The researchers used information for the period 1979-1993 from many sources, including aerosol and dust data from NASA’s Total Ozone Mapping Spectrometer (TOMS) satellite, precipitation data from NASA’s Global Precipitation Climatology Project (GPCP), and the Normalized Difference Vegetation Index (NDVI) from the Advanced Very High Resolution Radiometer (AVHRR) to analyze surface vegetation cover.

Overall, in the 14 source regions studied, anomalies in dust emissions were closely related to precipitation in 12, vegetation in eight, and to wind speed in two, suggesting that rainfall is the best climate predictor of dust emissions. But other factors, including land features, elevation, the availability of loose sediments, and local distribution of water under the Earth’s surface also greatly affect dust emission.

"This study highlights the importance of soil characteristics in dust emission and shows their influence to be more prevalent than previously believed," said Zender. For instance, some soils may lack free sand-sized particles to initiate dust production, like in the Lake Eyre Basin of Australia. Other areas have soils consisting largely of clay that naturally produce less dust, while some soils may be full of sediments perfect for dust production, but are so hard and crusted that none of the particles can escape to produce dust.

While these and other factors are somewhat represented in today’s computer models, "they don’t adequately account for the formation and destruction of surface soils and how sediment supply for dust production varies from region to region," said Zender. "They also underestimate the monthly to yearly variations in dust production and its associated climate impacts."

Future computer models that address these issues will allow scientists to better predict dust production in both the short- and long-term. Such improvements are important because dust emissions have a wide impact on climate and weather, from modifying rainfall thousands of miles away, to influencing hurricane intensity and affecting air quality.

The study was published online in July 2005 in the Journal of Geophysical Research-Atmospheres.

Rob Gutro | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Wandering greenhouse gas
16.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Unique Insights into the Antarctic Ice Shelf System
14.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>