Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heavy Rains Can Make More Dust in Earth’s Driest Spots

26.10.2005


Typically we think of rainfall as cleaning the air by removing dust as it falls through the atmosphere and helping plants grow that protect and hold the soil. But a new NASA-funded study looking at some of the world’s dustiest areas shows that heavy downpours can eventually lead to more dust being released into the atmosphere.



Typically drought reduces vegetation growth, increasing soil vulnerability to wind erosion, while rainfall tends to have the opposite effect. In the new study researchers examining 14 of the Earth’s dustiest regions found that in some regions, heavy rainfall and flooding leave behind sediments that include fine grain size particles that eventually get carried by winds in successive dry periods, increasing the amount of airborne dust, or emissions, released a year or more later. This is especially common in the Tigris-Euphrates Basin and in the Zone of Chotts in North Africa.

The research also confirms that dust emissions from a specific region can vary considerably from season-to-season, or year to year, and are largely dependent on climate patterns.


In some regions, "like in Oman and Saudi Arabia, where heavy rains combine with monsoon-driven winds, precipitation has a more immediate impact and appears to erode the surface crust, or top layer of soil, increasing dust emissions within just a few weeks," said Charles Zender of the Department of Earth System Science, University of California-Irvine, and lead author of the study.

Other areas of the world, including the western United States, the Great Salt Lake in Utah, eastern Sahel in Africa, and Lake Eyre basin Australia, show a more typical response, as precipitation and vegetation lessens the amount of dust released into the atmosphere. In these regions, rain and ground water help form soil layers that diminish the ability of wind to erode and carry soil particles.

Tiny dust particles have a significant influence on climate and weather patterns around the world by reflecting and absorbing sunlight and by serving as a nucleus or surface for water vapor, so that clouds can grow and form precipitation.

The researchers used information for the period 1979-1993 from many sources, including aerosol and dust data from NASA’s Total Ozone Mapping Spectrometer (TOMS) satellite, precipitation data from NASA’s Global Precipitation Climatology Project (GPCP), and the Normalized Difference Vegetation Index (NDVI) from the Advanced Very High Resolution Radiometer (AVHRR) to analyze surface vegetation cover.

Overall, in the 14 source regions studied, anomalies in dust emissions were closely related to precipitation in 12, vegetation in eight, and to wind speed in two, suggesting that rainfall is the best climate predictor of dust emissions. But other factors, including land features, elevation, the availability of loose sediments, and local distribution of water under the Earth’s surface also greatly affect dust emission.

"This study highlights the importance of soil characteristics in dust emission and shows their influence to be more prevalent than previously believed," said Zender. For instance, some soils may lack free sand-sized particles to initiate dust production, like in the Lake Eyre Basin of Australia. Other areas have soils consisting largely of clay that naturally produce less dust, while some soils may be full of sediments perfect for dust production, but are so hard and crusted that none of the particles can escape to produce dust.

While these and other factors are somewhat represented in today’s computer models, "they don’t adequately account for the formation and destruction of surface soils and how sediment supply for dust production varies from region to region," said Zender. "They also underestimate the monthly to yearly variations in dust production and its associated climate impacts."

Future computer models that address these issues will allow scientists to better predict dust production in both the short- and long-term. Such improvements are important because dust emissions have a wide impact on climate and weather, from modifying rainfall thousands of miles away, to influencing hurricane intensity and affecting air quality.

The study was published online in July 2005 in the Journal of Geophysical Research-Atmospheres.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov/centers/goddard/news/topstory/2005/rainfall_dust.html

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>