Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heavy Rains Can Make More Dust in Earth’s Driest Spots

26.10.2005


Typically we think of rainfall as cleaning the air by removing dust as it falls through the atmosphere and helping plants grow that protect and hold the soil. But a new NASA-funded study looking at some of the world’s dustiest areas shows that heavy downpours can eventually lead to more dust being released into the atmosphere.



Typically drought reduces vegetation growth, increasing soil vulnerability to wind erosion, while rainfall tends to have the opposite effect. In the new study researchers examining 14 of the Earth’s dustiest regions found that in some regions, heavy rainfall and flooding leave behind sediments that include fine grain size particles that eventually get carried by winds in successive dry periods, increasing the amount of airborne dust, or emissions, released a year or more later. This is especially common in the Tigris-Euphrates Basin and in the Zone of Chotts in North Africa.

The research also confirms that dust emissions from a specific region can vary considerably from season-to-season, or year to year, and are largely dependent on climate patterns.


In some regions, "like in Oman and Saudi Arabia, where heavy rains combine with monsoon-driven winds, precipitation has a more immediate impact and appears to erode the surface crust, or top layer of soil, increasing dust emissions within just a few weeks," said Charles Zender of the Department of Earth System Science, University of California-Irvine, and lead author of the study.

Other areas of the world, including the western United States, the Great Salt Lake in Utah, eastern Sahel in Africa, and Lake Eyre basin Australia, show a more typical response, as precipitation and vegetation lessens the amount of dust released into the atmosphere. In these regions, rain and ground water help form soil layers that diminish the ability of wind to erode and carry soil particles.

Tiny dust particles have a significant influence on climate and weather patterns around the world by reflecting and absorbing sunlight and by serving as a nucleus or surface for water vapor, so that clouds can grow and form precipitation.

The researchers used information for the period 1979-1993 from many sources, including aerosol and dust data from NASA’s Total Ozone Mapping Spectrometer (TOMS) satellite, precipitation data from NASA’s Global Precipitation Climatology Project (GPCP), and the Normalized Difference Vegetation Index (NDVI) from the Advanced Very High Resolution Radiometer (AVHRR) to analyze surface vegetation cover.

Overall, in the 14 source regions studied, anomalies in dust emissions were closely related to precipitation in 12, vegetation in eight, and to wind speed in two, suggesting that rainfall is the best climate predictor of dust emissions. But other factors, including land features, elevation, the availability of loose sediments, and local distribution of water under the Earth’s surface also greatly affect dust emission.

"This study highlights the importance of soil characteristics in dust emission and shows their influence to be more prevalent than previously believed," said Zender. For instance, some soils may lack free sand-sized particles to initiate dust production, like in the Lake Eyre Basin of Australia. Other areas have soils consisting largely of clay that naturally produce less dust, while some soils may be full of sediments perfect for dust production, but are so hard and crusted that none of the particles can escape to produce dust.

While these and other factors are somewhat represented in today’s computer models, "they don’t adequately account for the formation and destruction of surface soils and how sediment supply for dust production varies from region to region," said Zender. "They also underestimate the monthly to yearly variations in dust production and its associated climate impacts."

Future computer models that address these issues will allow scientists to better predict dust production in both the short- and long-term. Such improvements are important because dust emissions have a wide impact on climate and weather, from modifying rainfall thousands of miles away, to influencing hurricane intensity and affecting air quality.

The study was published online in July 2005 in the Journal of Geophysical Research-Atmospheres.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov/centers/goddard/news/topstory/2005/rainfall_dust.html

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>