Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beneficial effects of no-till farming depend upon future climate change

14.10.2005


By storing carbon in their fields through no-till farming practice, farmers can help countries meet targeted reductions in atmospheric carbon dioxide and reduce the harmful effects of global warming.



Growing plants take carbon dioxide from the air and store it as carbon in their tissues. Most of this carbon is returned to the atmosphere as carbon dioxide when crops are harvested and consumed. Some carbon, however, can be permanently stored, or sequestered, in the soil as organic matter. Changes in land management can potentially increase the accumulation of organic carbon in soil.

The amount of carbon stored in soils also depends on how the climate changes and how much carbon dioxide is in the atmosphere, say researchers from the University of Illinois at Urbana-Champaign and Oak Ridge National Laboratory in Tennessee.


"Our research focuses on the feasibility of different sequestration schemes for reducing natural emissions of carbon dioxide or enhancing the natural uptake of atmospheric carbon dioxide," said Atul Jain, a U. of I. professor of atmospheric sciences and lead author of a paper published in the Oct. 12 issue of Geophysical Research Letters. "Converting from conventional plow tillage to no-till practice is among the most cost-effective ways to reduce the buildup of carbon dioxide in the atmosphere."

To study the effect of changes in climate and atmospheric carbon dioxide on soil carbon sequestration, the researchers used a new Earth-system model called the Integrated Science Assessment Model. Developed by Jain and his graduate students, the model includes the complex physical and chemical interactions among carbon-dioxide emissions, climate change, carbon-dioxide uptake by plants and oceans, and changes in farming practices.

About 18 percent of cropland in the United States and about 30 percent of cropland in Canada is under no-till, Jain said. By not tilling their fields, farmers can save labor and fuel costs, reduce soil erosion and preserve precious nutrients. No-till also increases the accumulation of soil organic carbon, thereby resulting in sequestration of atmospheric carbon dioxide.

Changes in no-till land management were simulated with and without changes in climate and carbon dioxide levels over the period 1981 to 2000. All model simulations were based upon the actual adoption of no-till practices on U.S. and Canadian farms.

"Comparing the model results with and without changes in carbon dioxide and climate allows us to estimate the impact of recent changes in climate and carbon dioxide on soil carbon sequestration," Jain said. "Over the period 1981 to 2000, 868 million tons of carbon were stored in solids under no-till farming. Five percent of this carbon storage comes about because climate change and increasing atmospheric carbon dioxide accelerate carbon storage in soil. Future increases in no-till could sequester enough carbon to satisfy nearly one-fifth of the total U.S. reduction in carbon-dioxide emissions called for by the Kyoto Protocol."

The effects of climate change on carbon storage will vary from place to place because of differences in how soil moisture and soil temperature change as the climate warms, Jain said. In general, in central and western Canada, the eastern United States, and portions of Florida and Texas, carbon sequestration may increase. In other areas, such as Illinois, climate change will reduce the amount of sequestered carbon.

"Climate change will reduce the gains in the carbon storage from no-till in some areas, but there is still a net gain in stored carbon," Jain said. "In the future, farmers could receive credit for the carbon sequestered in their fields under a carbon-trading arrangement such as has been proposed for the Kyoto Protocol."

Co-authors of the paper were Oak Ridge scientists Tristram West and Wilfred Post, and Illinois graduate student Xiaojuan Yang.

James E. Kloeppel, | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>