Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beneficial effects of no-till farming depend upon future climate change

14.10.2005


By storing carbon in their fields through no-till farming practice, farmers can help countries meet targeted reductions in atmospheric carbon dioxide and reduce the harmful effects of global warming.



Growing plants take carbon dioxide from the air and store it as carbon in their tissues. Most of this carbon is returned to the atmosphere as carbon dioxide when crops are harvested and consumed. Some carbon, however, can be permanently stored, or sequestered, in the soil as organic matter. Changes in land management can potentially increase the accumulation of organic carbon in soil.

The amount of carbon stored in soils also depends on how the climate changes and how much carbon dioxide is in the atmosphere, say researchers from the University of Illinois at Urbana-Champaign and Oak Ridge National Laboratory in Tennessee.


"Our research focuses on the feasibility of different sequestration schemes for reducing natural emissions of carbon dioxide or enhancing the natural uptake of atmospheric carbon dioxide," said Atul Jain, a U. of I. professor of atmospheric sciences and lead author of a paper published in the Oct. 12 issue of Geophysical Research Letters. "Converting from conventional plow tillage to no-till practice is among the most cost-effective ways to reduce the buildup of carbon dioxide in the atmosphere."

To study the effect of changes in climate and atmospheric carbon dioxide on soil carbon sequestration, the researchers used a new Earth-system model called the Integrated Science Assessment Model. Developed by Jain and his graduate students, the model includes the complex physical and chemical interactions among carbon-dioxide emissions, climate change, carbon-dioxide uptake by plants and oceans, and changes in farming practices.

About 18 percent of cropland in the United States and about 30 percent of cropland in Canada is under no-till, Jain said. By not tilling their fields, farmers can save labor and fuel costs, reduce soil erosion and preserve precious nutrients. No-till also increases the accumulation of soil organic carbon, thereby resulting in sequestration of atmospheric carbon dioxide.

Changes in no-till land management were simulated with and without changes in climate and carbon dioxide levels over the period 1981 to 2000. All model simulations were based upon the actual adoption of no-till practices on U.S. and Canadian farms.

"Comparing the model results with and without changes in carbon dioxide and climate allows us to estimate the impact of recent changes in climate and carbon dioxide on soil carbon sequestration," Jain said. "Over the period 1981 to 2000, 868 million tons of carbon were stored in solids under no-till farming. Five percent of this carbon storage comes about because climate change and increasing atmospheric carbon dioxide accelerate carbon storage in soil. Future increases in no-till could sequester enough carbon to satisfy nearly one-fifth of the total U.S. reduction in carbon-dioxide emissions called for by the Kyoto Protocol."

The effects of climate change on carbon storage will vary from place to place because of differences in how soil moisture and soil temperature change as the climate warms, Jain said. In general, in central and western Canada, the eastern United States, and portions of Florida and Texas, carbon sequestration may increase. In other areas, such as Illinois, climate change will reduce the amount of sequestered carbon.

"Climate change will reduce the gains in the carbon storage from no-till in some areas, but there is still a net gain in stored carbon," Jain said. "In the future, farmers could receive credit for the carbon sequestered in their fields under a carbon-trading arrangement such as has been proposed for the Kyoto Protocol."

Co-authors of the paper were Oak Ridge scientists Tristram West and Wilfred Post, and Illinois graduate student Xiaojuan Yang.

James E. Kloeppel, | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>