Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better measurements reveal seasonal changes in sulfur

10.10.2005


Researchers from the University of Maryland (UMD) and the National Institute of Standards and Technology (NIST) have developed a new and improved technique for the simultaneous measurement of sulfur isotopic ratios and concentrations of atmospheric sulfate using snow samples from Greenland and Kyrgyzstan.


Aerial view of the Greenland coast. Credit: NASA-JSC-ES&IA



Sulfur plays an important role in the Earth’s climate. Sulfate particles in the atmosphere scatter and absorb sunlight, provide "seeds" for cloud formation, and affect the reflectivity and radiance of clouds, and thus the temperatures at the Earth’s surface. Atmospheric sulfate comes from natural sources, including oceans and volcanoes, but a large fraction comes from the burning of fossil fuels. Researchers can distinguish between various natural and anthropogenic sources in snow by measuring sulfur isotopes--forms of the element with different numbers of neutrons.

To study how these particulates have changed over time, scientists dig holes in snow that provide an archive of atmospheric particles deposited on the Earth’s surface. The standard analysis technique, gas-source isotope ratio mass spectroscopy (GIRMS), requires relatively large samples--up to four kilograms (about 9 pounds) of snow and ice, but the cycling of sulfur in the atmosphere is dynamic and variable, so samples this large blur seasonal changes.


To solve this problem, the UMD/NIST team developed a new analytical tool based on thermal ionization mass spectrometry (TIMS), which requires much smaller samples. The researchers used an advanced calibration technique known as double isotopic spiking to correct measurement drift and obtain isotope ratio measurements comparable to or better than GIRMS. The smaller snow samples required for TIMS make it possible to distinguish seasonal changes in sulfur particulate composition. The technique also can be used for making highly precise and accurate measurements of sulfur in low-sulfur fossil fuels, and similar applications.

Michael Baum | EurekAlert!
Further information:
http://www.nist.gov

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>