Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Heated 3-D Look Into Erin’s Eye

07.10.2005


Hurricane Erin raced across the North Atlantic and along the eastern seaboard in September 2001. She was used as an experiment for a study to improve hurricane tracking and intensity predictions, allowing meteorologists to provide more accurate and timely warnings to the public. Studies show that temperatures measured at an extremely high altitude collected from a hurricane’s center or eye can provide improved understanding of how hurricanes change intensity.



Hurricane Erin was analyzed during the fourth Convection And Moisture EXperiment (CAMEX-4), which took place from August 16 through September 24, 2001. The mission originated from the Naval Air Station in Jacksonville, Fla. The mission united researchers from 10 universities, five NASA centers and the National Oceanic and Atmospheric Administration. CAMEX-4 is a series of field research investigations to study tropical cyclones — storms commonly known as hurricanes.

Twenty instrumented packages, called dropsondes, were dropped into Erin’s eye by two NASA research aircraft (the ER-2 and DC-8). The special packages included instruments that mapped temperature patterns.


For the first time, researchers were able to reconstruct the structure of the eye in three dimensions from as high as 70,000 feet, down to the ocean surface, in great detail. The dropsondes showed Erin’s warm core decreasing while it was rapidly weakening, making the storm more vulnerable to wind shear, a change in horizontal winds, which led to the storm falling apart.

Hurricane Erin’s rainfall pattern adjusted quickly to surprisingly small changes in wind speed patterns in the surrounding atmosphere. Weak horizontal winds rearrange rain and wind structure, which create uneven weather conditions around the hurricane’s core.

Observations from the study show the relationship between warm air from the eye of the storm is linked to reduction in sea surface pressure, which is the basic process that drives the hurricane’s destructive winds.

Although little is known about the birth of a hurricane and what causes it to strengthen or weaken, scientists have made substantial steps toward improving predictions of where a hurricane will move or make landfall. The ability to forecast intensity change, however, has always been a challenge for meteorologists.

The research done on Hurricane Erin was important because it could help forecasters understand factors that control rain intensity and distribution for hurricanes landing along the Eastern Seaboard.

Freshwater flooding is the number one killer from hurricanes in the Western Hemisphere and the study of a hurricane’s rainfall pattern could better prepare us for the next big storm.

This research paper, titled "Warm Core Structure of Hurricane Erin Diagnosed from High Altitude Dropsondes During CAMEX-4" by J. Halverson et al., is going to be published in an upcoming issue of the American Meteorological Society’s Journal of Atmospheric Science, CAMEX Special Issue, at the end of 2005.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov/vision/earth/lookingatearth/aircraft_hurricane.html

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>