Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MELT data sheds new and surprising light on birth of oceanic plates

09.09.2005


The East Pacific Rise, a vast volcanic mountain range submerged in the eastern Pacific Ocean, is one of the fastest seafloor factories on the planet. Here, along a rocky spine that runs about 1,000 miles west of South America, oceanic crust is created from magma bubbling up from deep within Earth’s interior.



Forces that shape these young oceanic plates have come into clearer focus through research conducted by scientists at the Woods Hole Oceanographic Institution, Brown University and the Japan Agency for Marine-Earth Science and Technology.

The research represents the first time that seismic and electromagnetic data were analyzed in tandem from 1995 Mantle Electromagnetic and Tomography, or MELT, Experiment. MELT employed 51 ocean-bottom seismometers and 30 magnetotelluric receivers two miles under the sea to measure sound waves and magnetic fields along the East Pacific Rise, making it one of the largest marine geophysical experiments ever conducted.


In a paper published in Nature, the team notes that in rock down to a depth of about 60 kilometers below the ocean floor, electrical currents conduct poorly and sound waves travel rapidly. Deeper down, beyond 60 kilometers, there is a dramatic increase in electrical conductivity, and sound waves travel at their slowest.

A switch in seismic and electrical properties with depth was expected. Researchers were surprised, however, at how close to the East Pacific Rise this structure develops and how little it changes with increasing distance from the rise.

Brown marine geophysicist Donald Forsyth said the team, led by Robert Evans from the Woods Hole Oceanographic Institution, has a theory about the cause of the sudden compositional changes at 60 kilometers: dehydration.

As magma migrates to the surface to form crust at the rise, it leaves behind a dry, residual layer about 60 kilometers thick. This change from “dry” surface rock to “damp” rock below it increases electrical conductivity and slows seismic velocity, the researchers write.

Here is what they did not expect: These changes occur, the team found, less than 100 kilometers away from the highest point on the ridge. And the seismic and electrical measurements remained nearly constant at least about 500 kilometers away from the crest.

Separating seafloor guides magma up to mid-ocean ridges such as the East Pacific Rise, where the molten rock erupts, fans out along the ocean floor and cools to form new crust. Cooling allows sound waves and electrical currents to travel faster. But scientists thought this cooling – and the resulting changes in the rock – would be gradual.

“About two-thirds of the Earth’s surface is oceanic crust – and it is all formed at ridges,” Forsyth said. “So this work helps us better understand the basic processes of how this crust is formed.”

The National Science Foundation funded MELT and the latest research.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Earth Sciences:

nachricht Weather extremes: Humans likely influence giant airstreams
27.03.2017 | Potsdam-Institut für Klimafolgenforschung

nachricht Sun's impact on climate change quantified for first time
27.03.2017 | Schweizerischer Nationalfonds SNF

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Big data approach to predict protein structure

27.03.2017 | Life Sciences

Parallel computation provides deeper insight into brain function

27.03.2017 | Life Sciences

Weather extremes: Humans likely influence giant airstreams

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>