Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MELT data sheds new and surprising light on birth of oceanic plates

09.09.2005


The East Pacific Rise, a vast volcanic mountain range submerged in the eastern Pacific Ocean, is one of the fastest seafloor factories on the planet. Here, along a rocky spine that runs about 1,000 miles west of South America, oceanic crust is created from magma bubbling up from deep within Earth’s interior.



Forces that shape these young oceanic plates have come into clearer focus through research conducted by scientists at the Woods Hole Oceanographic Institution, Brown University and the Japan Agency for Marine-Earth Science and Technology.

The research represents the first time that seismic and electromagnetic data were analyzed in tandem from 1995 Mantle Electromagnetic and Tomography, or MELT, Experiment. MELT employed 51 ocean-bottom seismometers and 30 magnetotelluric receivers two miles under the sea to measure sound waves and magnetic fields along the East Pacific Rise, making it one of the largest marine geophysical experiments ever conducted.


In a paper published in Nature, the team notes that in rock down to a depth of about 60 kilometers below the ocean floor, electrical currents conduct poorly and sound waves travel rapidly. Deeper down, beyond 60 kilometers, there is a dramatic increase in electrical conductivity, and sound waves travel at their slowest.

A switch in seismic and electrical properties with depth was expected. Researchers were surprised, however, at how close to the East Pacific Rise this structure develops and how little it changes with increasing distance from the rise.

Brown marine geophysicist Donald Forsyth said the team, led by Robert Evans from the Woods Hole Oceanographic Institution, has a theory about the cause of the sudden compositional changes at 60 kilometers: dehydration.

As magma migrates to the surface to form crust at the rise, it leaves behind a dry, residual layer about 60 kilometers thick. This change from “dry” surface rock to “damp” rock below it increases electrical conductivity and slows seismic velocity, the researchers write.

Here is what they did not expect: These changes occur, the team found, less than 100 kilometers away from the highest point on the ridge. And the seismic and electrical measurements remained nearly constant at least about 500 kilometers away from the crest.

Separating seafloor guides magma up to mid-ocean ridges such as the East Pacific Rise, where the molten rock erupts, fans out along the ocean floor and cools to form new crust. Cooling allows sound waves and electrical currents to travel faster. But scientists thought this cooling – and the resulting changes in the rock – would be gradual.

“About two-thirds of the Earth’s surface is oceanic crust – and it is all formed at ridges,” Forsyth said. “So this work helps us better understand the basic processes of how this crust is formed.”

The National Science Foundation funded MELT and the latest research.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>