Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists confirm super-rotation of Earth’s inner core

26.08.2005


Scientists at Columbia University’s Lamont-Doherty Earth Observatory and the University of Illinois at Urbana-Champaign have ended a nine-year debate over whether the Earth’s inner core is undergoing changes that can be detected on a human timescale. Their work, which appears in the August 26 issue of the journal Science, measured differences in the time it took seismic waves generated by nearly identical earthquakes up to 35 years apart to travel through the Earth’s inner core.



"Our observations confirm the change of inner core travel times, which was first claimed by Song and Richards in 1996," said Jian Zhang, a doctoral student in seismology at Lamont-Doherty and one of the study’s co-lead authors. "This should settle the debate on whether these changes are real or an artifact of the original measurement method, and get us back to the work of understanding the history and dynamics of our planet."

Earth’s core consists of a solid inner core about 1,500 miles (2,400 km) in diameter and a fluid outer core about 4,200 miles (7,000 km) across. The inner core plays an important role in the geodynamo that generates Earth’s magnetic field.


In 1996, two of the current study’s authors, Paul Richards of Lamont-Doherty and Xiaodong Song, then a post-doctoral researcher at Lamont-Doherty and now an associate professor at Illinois, presented evidence based on three decades of seismological records that they said showed the inner core was rotating approximately one degree per year faster than the rest of the planet. Their study received substantial popular acclaim, but also drew criticism from some of their peers. In particular, a few scientists challenged their conclusions based on the fact that their results were right at the edge of what could be claimed.

To address the criticism, groups led by Richards and Song began looking for so-called waveform doublets--earthquakes that occur in essentially the same location and are detected at the same seismic recording station. If such earthquakes could be found, they reasoned, then measurements of changes in travel time could be made much more precisely.

The breakthrough came when Zhang found a September 2003 earthquake in the South Atlantic near the South Sandwich Islands that was detected in Alaska and provided a near-exact match with one that had occurred in December 1993. Zhang, Richards and their colleagues were able to see that the seismograms were almost identical for waves that had traveled only in the mantle and outer core. The waves that had traveled through the inner core, however, looked slightly different--they had made the trip through the Earth 1/10 of a second faster in 2003 than in 1993. Moreover, the shape of the waves themselves changed perceptibly after 10 years. In all, the scientists analyzed 18 doublets from 30 earthquakes in the South Sandwich Islands that were detected at 58 seismic stations in Alaska between 1961 and 2004.

In general, they found that waves passing through the inner core arrived noticeably earlier the more the earthquakes were separated in time. Interpreting this in terms of the known variability of wave speeds, they concluded that material which permits seismic waves to travel faster through the Earth had moved into the path taken by waves traveling through the inner core. They calculated that this movement is caused by the core rotating approximately 0.3-0.5 degrees faster than the rest of the Earth. In addition, the change in the shape of the seismic waves is apparently caused, as Richards describes it, by inhomogeneity or "lumpiness" of the inner core, which has a varying influence on seismic waves produced years apart.

"For decades, people thought of the Earth’s interior as changing very slowly over millions of years," said Richards, Mellon Professor of the Natural Sciences at Columbia. "This shows that we live on a remarkably dynamic planet. It also underscores the fact that we know more about the moon than about what’s beneath our feet. Now we need to understand what is driving these changes."

Ken Kostel | EurekAlert!
Further information:
http://www.columbia.edu
http://www.earth.columbia.edu
http://www.ldeo.columbia.edu

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>