Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists confirm super-rotation of Earth’s inner core

26.08.2005


Scientists at Columbia University’s Lamont-Doherty Earth Observatory and the University of Illinois at Urbana-Champaign have ended a nine-year debate over whether the Earth’s inner core is undergoing changes that can be detected on a human timescale. Their work, which appears in the August 26 issue of the journal Science, measured differences in the time it took seismic waves generated by nearly identical earthquakes up to 35 years apart to travel through the Earth’s inner core.



"Our observations confirm the change of inner core travel times, which was first claimed by Song and Richards in 1996," said Jian Zhang, a doctoral student in seismology at Lamont-Doherty and one of the study’s co-lead authors. "This should settle the debate on whether these changes are real or an artifact of the original measurement method, and get us back to the work of understanding the history and dynamics of our planet."

Earth’s core consists of a solid inner core about 1,500 miles (2,400 km) in diameter and a fluid outer core about 4,200 miles (7,000 km) across. The inner core plays an important role in the geodynamo that generates Earth’s magnetic field.


In 1996, two of the current study’s authors, Paul Richards of Lamont-Doherty and Xiaodong Song, then a post-doctoral researcher at Lamont-Doherty and now an associate professor at Illinois, presented evidence based on three decades of seismological records that they said showed the inner core was rotating approximately one degree per year faster than the rest of the planet. Their study received substantial popular acclaim, but also drew criticism from some of their peers. In particular, a few scientists challenged their conclusions based on the fact that their results were right at the edge of what could be claimed.

To address the criticism, groups led by Richards and Song began looking for so-called waveform doublets--earthquakes that occur in essentially the same location and are detected at the same seismic recording station. If such earthquakes could be found, they reasoned, then measurements of changes in travel time could be made much more precisely.

The breakthrough came when Zhang found a September 2003 earthquake in the South Atlantic near the South Sandwich Islands that was detected in Alaska and provided a near-exact match with one that had occurred in December 1993. Zhang, Richards and their colleagues were able to see that the seismograms were almost identical for waves that had traveled only in the mantle and outer core. The waves that had traveled through the inner core, however, looked slightly different--they had made the trip through the Earth 1/10 of a second faster in 2003 than in 1993. Moreover, the shape of the waves themselves changed perceptibly after 10 years. In all, the scientists analyzed 18 doublets from 30 earthquakes in the South Sandwich Islands that were detected at 58 seismic stations in Alaska between 1961 and 2004.

In general, they found that waves passing through the inner core arrived noticeably earlier the more the earthquakes were separated in time. Interpreting this in terms of the known variability of wave speeds, they concluded that material which permits seismic waves to travel faster through the Earth had moved into the path taken by waves traveling through the inner core. They calculated that this movement is caused by the core rotating approximately 0.3-0.5 degrees faster than the rest of the Earth. In addition, the change in the shape of the seismic waves is apparently caused, as Richards describes it, by inhomogeneity or "lumpiness" of the inner core, which has a varying influence on seismic waves produced years apart.

"For decades, people thought of the Earth’s interior as changing very slowly over millions of years," said Richards, Mellon Professor of the Natural Sciences at Columbia. "This shows that we live on a remarkably dynamic planet. It also underscores the fact that we know more about the moon than about what’s beneath our feet. Now we need to understand what is driving these changes."

Ken Kostel | EurekAlert!
Further information:
http://www.columbia.edu
http://www.earth.columbia.edu
http://www.ldeo.columbia.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>