Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists confirm super-rotation of Earth’s inner core


Scientists at Columbia University’s Lamont-Doherty Earth Observatory and the University of Illinois at Urbana-Champaign have ended a nine-year debate over whether the Earth’s inner core is undergoing changes that can be detected on a human timescale. Their work, which appears in the August 26 issue of the journal Science, measured differences in the time it took seismic waves generated by nearly identical earthquakes up to 35 years apart to travel through the Earth’s inner core.

"Our observations confirm the change of inner core travel times, which was first claimed by Song and Richards in 1996," said Jian Zhang, a doctoral student in seismology at Lamont-Doherty and one of the study’s co-lead authors. "This should settle the debate on whether these changes are real or an artifact of the original measurement method, and get us back to the work of understanding the history and dynamics of our planet."

Earth’s core consists of a solid inner core about 1,500 miles (2,400 km) in diameter and a fluid outer core about 4,200 miles (7,000 km) across. The inner core plays an important role in the geodynamo that generates Earth’s magnetic field.

In 1996, two of the current study’s authors, Paul Richards of Lamont-Doherty and Xiaodong Song, then a post-doctoral researcher at Lamont-Doherty and now an associate professor at Illinois, presented evidence based on three decades of seismological records that they said showed the inner core was rotating approximately one degree per year faster than the rest of the planet. Their study received substantial popular acclaim, but also drew criticism from some of their peers. In particular, a few scientists challenged their conclusions based on the fact that their results were right at the edge of what could be claimed.

To address the criticism, groups led by Richards and Song began looking for so-called waveform doublets--earthquakes that occur in essentially the same location and are detected at the same seismic recording station. If such earthquakes could be found, they reasoned, then measurements of changes in travel time could be made much more precisely.

The breakthrough came when Zhang found a September 2003 earthquake in the South Atlantic near the South Sandwich Islands that was detected in Alaska and provided a near-exact match with one that had occurred in December 1993. Zhang, Richards and their colleagues were able to see that the seismograms were almost identical for waves that had traveled only in the mantle and outer core. The waves that had traveled through the inner core, however, looked slightly different--they had made the trip through the Earth 1/10 of a second faster in 2003 than in 1993. Moreover, the shape of the waves themselves changed perceptibly after 10 years. In all, the scientists analyzed 18 doublets from 30 earthquakes in the South Sandwich Islands that were detected at 58 seismic stations in Alaska between 1961 and 2004.

In general, they found that waves passing through the inner core arrived noticeably earlier the more the earthquakes were separated in time. Interpreting this in terms of the known variability of wave speeds, they concluded that material which permits seismic waves to travel faster through the Earth had moved into the path taken by waves traveling through the inner core. They calculated that this movement is caused by the core rotating approximately 0.3-0.5 degrees faster than the rest of the Earth. In addition, the change in the shape of the seismic waves is apparently caused, as Richards describes it, by inhomogeneity or "lumpiness" of the inner core, which has a varying influence on seismic waves produced years apart.

"For decades, people thought of the Earth’s interior as changing very slowly over millions of years," said Richards, Mellon Professor of the Natural Sciences at Columbia. "This shows that we live on a remarkably dynamic planet. It also underscores the fact that we know more about the moon than about what’s beneath our feet. Now we need to understand what is driving these changes."

Ken Kostel | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>