Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ocean spray lubricates hurricane winds

26.07.2005


Hurricane Emily’s 140-mile-per-hour winds, which last week blew roofs off hotels and flattened trees throughout the Caribbean, owed their force to an unlikely culprit – ocean spray.



According to a new study by two University of California, Berkeley, mathematicians and their Russian colleague, the water droplets kicked up by rough seas serve to lubricate the swirling winds of hurricanes and cyclones, letting them build to speeds approaching 200 miles per hour. Without the lubricating effect of the spray, the mathematicians estimate, winds would rise to little more than 25 miles per hour.

"This is not a small effect," said Alexandre Chorin, professor of mathematics at UC Berkeley and faculty researcher at Lawrence Berkeley National Laboratory (LBNL). He and fellow UC Berkeley mathematics professor Grigory I. Barenblatt, also of LBNL, along with V. M. Prostokishin of the Shirshov Institute of Oceanology in Moscow, published their analysis of the effect of ocean spray in the Early Online Edition of the Proceedings of the National Academy of Sciences.


Over the past decade, the three mathematicians have developed a body of equations to describe turbulence in fluids and have applied these equations to many practical problems. Turbulence slows flowing liquids or gases by generating eddies, swirls and vortices, and thus plays a role in keeping airplanes aloft, slowing ships and taming rivers.

"Turbulence is generally a good thing," Chorin said, noting that without turbulence the Mississippi River at its mouth would be flowing at supersonic speed. "You need turbulence to make friction stronger."

The equations, when applied to a cloud of water droplets sandwiched between flowing air and water, indicate that large water droplets thrown up by cresting waves in rough seas inhibit the turbulence in the air over the ocean. Without this turbulence to drain energy from the swirling winds, winds can build to tremendous speeds. Without turbulence, friction between the air and water would be reduced by a factor of 1,000, Chorin said, sometimes allowing winds to rise to speeds eight times greater than would be the case with turbulence.

The turbulent vortices in the air are suppressed by the droplets when they rain back into the sea, somewhat like "combing unruly hair," Chorin said. These droplets are about 20 microns across (8 ten-thousandths of an inch) or larger.

The smaller the droplets, the less ability they have to suppress the turbulence, he said, which suggests one way to calm hurricanes.

"If you could develop a detergent to reduce the size of the droplets, you might be able to stop a hurricane," he said. "That’s not as far fetched as it sounds. In ancient times, sailors carried oil to pour out on the water to calm storms. Pouring oil on choppy waters was not a superstition."

In their paper, the mathematicians conclude that "We think that the action of oil was exactly the prevention of the formation of droplets! The turbulence was restored after the oil was dropped, the turbulent drag increased, and the intensity of the squall was reduced. Possibly hurricanes can be similarly prevented or damped by having airplanes deliver fast decaying harmless surfactants to the right places on the sea surface."

The team began working on the problem after a colleague, Sir M. James Lighthill, suggested to Barenblatt at a party that drops in ocean spray might have a lubricating effect on hurricane winds. Hurricanes or, more properly, tropical cyclones, form at low-pressure areas over warm, tropical oceans. Swirling air is accelerated by energy from the warm water.

Lighthill was unable to solve the problem before his untimely swimming death in 1998, but his friends took on the task employing their turbulence models. The paper is dedicated to "the great mathematician and fluid mechanician Sir James Lighthill."

Whereas Lighthill thought that evaporation of the droplets cooled the atmosphere and led to accelerated winds, Chorin, Barenblatt and Prostokishin have showed that more important is the reduction of turbulence by falling droplets. Nevertheless, they note that evaporative cooling also serves to reduce turbulence and thus allow winds to build.

Robert Sanders | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>