Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space shuttle Columbia’s last flight formed clouds over Antarctica

07.07.2005


A burst of mesospheric cloud activity over Antarctica in January 2003 was caused by the exhaust plume of the space shuttle Columbia during its final flight, reports a team of scientists who studied satellite and ground-based data from three different experiments. The data also call into question the role these clouds may play in monitoring global climate change.



"Our analysis shows that the Columbia’s exhaust plume approached the South Pole three days after launch," said Michael H. Stevens, a scientist at the Naval Research Laboratory and lead author of a paper scheduled to be published in the July issue of the journal Geophysical Research Letters. "The lower temperatures and high concentrations of water vapor over Antarctica caused a significant increase in polar mesospheric cloud activity."

Polar mesospheric clouds are the highest on Earth, forming at an altitude of about 52 miles. They normally form when temperatures fall below minus 125 degrees Celsius.


"Because the brightness, occurrence and range of the clouds have been increasing, some scientists have suggested that these clouds are indicators of global climate change," said Xinzhao Chu, a research scientist at the University of Illinois at Urbana-Champaign and a co-author of the paper. "That role needs to be reconsidered, however, because of the potential influence of water vapor in shuttle plumes."

On Jan. 16, 2003, the Columbia lifted from Kennedy Space Center on its final flight before the loss of the crew and orbiter 16 days later. As with previous shuttle launches, the orbiter released about 400 tons of water -- the primary product of the liquid hydrogen and liquid oxygen fuel -- while flying nearly horizontally at an altitude of 68 miles. The resulting plume was about 2 miles in diameter and about 650 miles long.

"The plume was detected and tracked by the Global Ultraviolet Imager on NASA’s Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics satellite," Stevens said. "The GUVI images reveal rapid movement of the shuttle plume toward the South Pole."

At the Rothera Research Station in Antarctica, Chu was measuring upper altitude iron densities and polar mesospheric clouds using a special lidar system designed by Illinois and operated in collaboration with the British Antarctic Survey. Three days after the launch, the lidar detected iron in the atmosphere at altitudes much higher than usual.

"In addition to a persistent layer of iron near an altitude of 56 miles, produced from ablating meteoroids entering Earth’s atmosphere, three anomalous iron features were found at altitudes between 64 and 71 miles," Chu said.

Too high to be caused by meteoroids, these iron features originated in the shuttle plume, the researchers report, and had been produced by the normal ablation of main engine components during launch.

"Within the next two weeks we measured almost all of the polar mesospheric clouds we were to see that season," Chu said. "Only four hours of cloud observations were recorded before mid-January. From January 19-26, however, 18 hours of cloud observations were recorded." The increase in polar mesospheric clouds was also observed with the Solar Backscatter Ultraviolet instrument on the NOAA-16 satellite. Additional evidence that the shuttle plume was responsible for the burst of cloud activity can be found in the mesopause temperature, inferred from the iron observations near an altitude of 56 miles, the researchers report. At Rothera, the mesopause temperature was minus 120 degrees Celsius, which is too warm for polar mesospheric clouds to form under typical water vapor concentrations. By dumping so much water vapor into the mesosphere, the shuttle raised the concentration enough to allow the clouds to form.

"Our data will force scientists to rethink the role of polar mesospheric clouds in monitoring global climate change," Stevens said. "Any interpretation of recent trends in cloud activity must consider the potential influence of the space shuttle program."

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>