Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space shuttle Columbia’s last flight formed clouds over Antarctica

07.07.2005


A burst of mesospheric cloud activity over Antarctica in January 2003 was caused by the exhaust plume of the space shuttle Columbia during its final flight, reports a team of scientists who studied satellite and ground-based data from three different experiments. The data also call into question the role these clouds may play in monitoring global climate change.



"Our analysis shows that the Columbia’s exhaust plume approached the South Pole three days after launch," said Michael H. Stevens, a scientist at the Naval Research Laboratory and lead author of a paper scheduled to be published in the July issue of the journal Geophysical Research Letters. "The lower temperatures and high concentrations of water vapor over Antarctica caused a significant increase in polar mesospheric cloud activity."

Polar mesospheric clouds are the highest on Earth, forming at an altitude of about 52 miles. They normally form when temperatures fall below minus 125 degrees Celsius.


"Because the brightness, occurrence and range of the clouds have been increasing, some scientists have suggested that these clouds are indicators of global climate change," said Xinzhao Chu, a research scientist at the University of Illinois at Urbana-Champaign and a co-author of the paper. "That role needs to be reconsidered, however, because of the potential influence of water vapor in shuttle plumes."

On Jan. 16, 2003, the Columbia lifted from Kennedy Space Center on its final flight before the loss of the crew and orbiter 16 days later. As with previous shuttle launches, the orbiter released about 400 tons of water -- the primary product of the liquid hydrogen and liquid oxygen fuel -- while flying nearly horizontally at an altitude of 68 miles. The resulting plume was about 2 miles in diameter and about 650 miles long.

"The plume was detected and tracked by the Global Ultraviolet Imager on NASA’s Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics satellite," Stevens said. "The GUVI images reveal rapid movement of the shuttle plume toward the South Pole."

At the Rothera Research Station in Antarctica, Chu was measuring upper altitude iron densities and polar mesospheric clouds using a special lidar system designed by Illinois and operated in collaboration with the British Antarctic Survey. Three days after the launch, the lidar detected iron in the atmosphere at altitudes much higher than usual.

"In addition to a persistent layer of iron near an altitude of 56 miles, produced from ablating meteoroids entering Earth’s atmosphere, three anomalous iron features were found at altitudes between 64 and 71 miles," Chu said.

Too high to be caused by meteoroids, these iron features originated in the shuttle plume, the researchers report, and had been produced by the normal ablation of main engine components during launch.

"Within the next two weeks we measured almost all of the polar mesospheric clouds we were to see that season," Chu said. "Only four hours of cloud observations were recorded before mid-January. From January 19-26, however, 18 hours of cloud observations were recorded." The increase in polar mesospheric clouds was also observed with the Solar Backscatter Ultraviolet instrument on the NOAA-16 satellite. Additional evidence that the shuttle plume was responsible for the burst of cloud activity can be found in the mesopause temperature, inferred from the iron observations near an altitude of 56 miles, the researchers report. At Rothera, the mesopause temperature was minus 120 degrees Celsius, which is too warm for polar mesospheric clouds to form under typical water vapor concentrations. By dumping so much water vapor into the mesosphere, the shuttle raised the concentration enough to allow the clouds to form.

"Our data will force scientists to rethink the role of polar mesospheric clouds in monitoring global climate change," Stevens said. "Any interpretation of recent trends in cloud activity must consider the potential influence of the space shuttle program."

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Earth Sciences:

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>