Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space shuttle Columbia’s last flight formed clouds over Antarctica

07.07.2005


A burst of mesospheric cloud activity over Antarctica in January 2003 was caused by the exhaust plume of the space shuttle Columbia during its final flight, reports a team of scientists who studied satellite and ground-based data from three different experiments. The data also call into question the role these clouds may play in monitoring global climate change.



"Our analysis shows that the Columbia’s exhaust plume approached the South Pole three days after launch," said Michael H. Stevens, a scientist at the Naval Research Laboratory and lead author of a paper scheduled to be published in the July issue of the journal Geophysical Research Letters. "The lower temperatures and high concentrations of water vapor over Antarctica caused a significant increase in polar mesospheric cloud activity."

Polar mesospheric clouds are the highest on Earth, forming at an altitude of about 52 miles. They normally form when temperatures fall below minus 125 degrees Celsius.


"Because the brightness, occurrence and range of the clouds have been increasing, some scientists have suggested that these clouds are indicators of global climate change," said Xinzhao Chu, a research scientist at the University of Illinois at Urbana-Champaign and a co-author of the paper. "That role needs to be reconsidered, however, because of the potential influence of water vapor in shuttle plumes."

On Jan. 16, 2003, the Columbia lifted from Kennedy Space Center on its final flight before the loss of the crew and orbiter 16 days later. As with previous shuttle launches, the orbiter released about 400 tons of water -- the primary product of the liquid hydrogen and liquid oxygen fuel -- while flying nearly horizontally at an altitude of 68 miles. The resulting plume was about 2 miles in diameter and about 650 miles long.

"The plume was detected and tracked by the Global Ultraviolet Imager on NASA’s Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics satellite," Stevens said. "The GUVI images reveal rapid movement of the shuttle plume toward the South Pole."

At the Rothera Research Station in Antarctica, Chu was measuring upper altitude iron densities and polar mesospheric clouds using a special lidar system designed by Illinois and operated in collaboration with the British Antarctic Survey. Three days after the launch, the lidar detected iron in the atmosphere at altitudes much higher than usual.

"In addition to a persistent layer of iron near an altitude of 56 miles, produced from ablating meteoroids entering Earth’s atmosphere, three anomalous iron features were found at altitudes between 64 and 71 miles," Chu said.

Too high to be caused by meteoroids, these iron features originated in the shuttle plume, the researchers report, and had been produced by the normal ablation of main engine components during launch.

"Within the next two weeks we measured almost all of the polar mesospheric clouds we were to see that season," Chu said. "Only four hours of cloud observations were recorded before mid-January. From January 19-26, however, 18 hours of cloud observations were recorded." The increase in polar mesospheric clouds was also observed with the Solar Backscatter Ultraviolet instrument on the NOAA-16 satellite. Additional evidence that the shuttle plume was responsible for the burst of cloud activity can be found in the mesopause temperature, inferred from the iron observations near an altitude of 56 miles, the researchers report. At Rothera, the mesopause temperature was minus 120 degrees Celsius, which is too warm for polar mesospheric clouds to form under typical water vapor concentrations. By dumping so much water vapor into the mesosphere, the shuttle raised the concentration enough to allow the clouds to form.

"Our data will force scientists to rethink the role of polar mesospheric clouds in monitoring global climate change," Stevens said. "Any interpretation of recent trends in cloud activity must consider the potential influence of the space shuttle program."

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>