Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space shuttle Columbia’s last flight formed clouds over Antarctica

07.07.2005


A burst of mesospheric cloud activity over Antarctica in January 2003 was caused by the exhaust plume of the space shuttle Columbia during its final flight, reports a team of scientists who studied satellite and ground-based data from three different experiments. The data also call into question the role these clouds may play in monitoring global climate change.



"Our analysis shows that the Columbia’s exhaust plume approached the South Pole three days after launch," said Michael H. Stevens, a scientist at the Naval Research Laboratory and lead author of a paper scheduled to be published in the July issue of the journal Geophysical Research Letters. "The lower temperatures and high concentrations of water vapor over Antarctica caused a significant increase in polar mesospheric cloud activity."

Polar mesospheric clouds are the highest on Earth, forming at an altitude of about 52 miles. They normally form when temperatures fall below minus 125 degrees Celsius.


"Because the brightness, occurrence and range of the clouds have been increasing, some scientists have suggested that these clouds are indicators of global climate change," said Xinzhao Chu, a research scientist at the University of Illinois at Urbana-Champaign and a co-author of the paper. "That role needs to be reconsidered, however, because of the potential influence of water vapor in shuttle plumes."

On Jan. 16, 2003, the Columbia lifted from Kennedy Space Center on its final flight before the loss of the crew and orbiter 16 days later. As with previous shuttle launches, the orbiter released about 400 tons of water -- the primary product of the liquid hydrogen and liquid oxygen fuel -- while flying nearly horizontally at an altitude of 68 miles. The resulting plume was about 2 miles in diameter and about 650 miles long.

"The plume was detected and tracked by the Global Ultraviolet Imager on NASA’s Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics satellite," Stevens said. "The GUVI images reveal rapid movement of the shuttle plume toward the South Pole."

At the Rothera Research Station in Antarctica, Chu was measuring upper altitude iron densities and polar mesospheric clouds using a special lidar system designed by Illinois and operated in collaboration with the British Antarctic Survey. Three days after the launch, the lidar detected iron in the atmosphere at altitudes much higher than usual.

"In addition to a persistent layer of iron near an altitude of 56 miles, produced from ablating meteoroids entering Earth’s atmosphere, three anomalous iron features were found at altitudes between 64 and 71 miles," Chu said.

Too high to be caused by meteoroids, these iron features originated in the shuttle plume, the researchers report, and had been produced by the normal ablation of main engine components during launch.

"Within the next two weeks we measured almost all of the polar mesospheric clouds we were to see that season," Chu said. "Only four hours of cloud observations were recorded before mid-January. From January 19-26, however, 18 hours of cloud observations were recorded." The increase in polar mesospheric clouds was also observed with the Solar Backscatter Ultraviolet instrument on the NOAA-16 satellite. Additional evidence that the shuttle plume was responsible for the burst of cloud activity can be found in the mesopause temperature, inferred from the iron observations near an altitude of 56 miles, the researchers report. At Rothera, the mesopause temperature was minus 120 degrees Celsius, which is too warm for polar mesospheric clouds to form under typical water vapor concentrations. By dumping so much water vapor into the mesosphere, the shuttle raised the concentration enough to allow the clouds to form.

"Our data will force scientists to rethink the role of polar mesospheric clouds in monitoring global climate change," Stevens said. "Any interpretation of recent trends in cloud activity must consider the potential influence of the space shuttle program."

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Earth Sciences:

nachricht AWI researchers measure a record concentration of microplastic in arctic sea ice
24.04.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Climate change in a warmer-than-modern world: New findings of Kiel Researchers
24.04.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>