Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mountain-building process much faster – and cooler – than previously thought

30.06.2005


New ’cold crust’ model may help explain other Earth-shaping events



Geologists at Queen’s University have discovered that the time it takes for mountain ranges to form is millions of years shorter than previously thought. This controversial finding could have implications for our understanding of other geological processes that shaped the Earth, says Professor James Lee and postdoctoral fellow Alfredo Camacho of Queen’s Geological Sciences and Geological Engineering Department.

The study will appear in the June 30 edition of the international journal Nature.


Other members of the team are Bastiaan J. Hensen from University of New South Wales, and Jean Braun from Université de Rennes, France.

Using state-of-the-art techniques to measure the age of rocks, the researchers deciphered a pattern of ages within single crystals from rock remnants that survived continental collision. Their measurements show a 13-million-year cycle in which rocks are buried to 60 km depth, then returned to the surface. This occurred 425 million years ago during a large-scale mountain-building event called the Caledonian Orogeny.

"We were excited to be able to show, for the first time, that the duration of an orogenic’ cycle [burying, then bringing rocks to the surface] is much shorter than was previously believed – only 13 million years in this case," say Drs. Camacho and Lee. "Geologically speaking, that is a very short period indeed – a mere drop in the bucket of the Earth’s history." The duration of many geological processes that shape the Earth has been thought to last for hundreds of millions of years.

The study also suggests that the buildup of heat previously thought to be widespread during mountain building may instead be related to short-term events caused by either pulsed injection of hot fluids and/or friction on faults, with the overall crust remaining relatively cool. The study focused on the Caledonian Orogeny in Norway, where injections of hot fluids caused rapid fracturing of this cool crust, producing deep-seated continental earthquakes.

"By coupling geochronology with fundamental physical and mathematical principles and computer modeling, we can assess the durations of a variety of geological processes for the very first time," says Dr. Lee. "The new quantitative technique that we developed allows us to measure the duration of thermal disturbances at all scales, from small-scale intrusions of molten rocks into the crust (e.g. volcanoes) to large-scale orogenic cycles."

This unique "cold-crust" model stems from a new quantitative technique integrating geo-chronology, mathematics, physics, and basic geological principles. "It neatly explains many previously puzzling geological observations and may be relevant to other mountain-building events around the world," says Dr. Lee.

Nancy Dorrance | EurekAlert!
Further information:
http://www.queensu.ca

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>