Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NCAR Analysis Shows Widespread Pollution from 2004 Wildfires

30.06.2005


A fire fighter works the line during the 2004 Alaska Solstice Complex fire. (Photo courtesy the Alaska Fire Service.)


This MOPITT image shows plumes of carbon monoxide streaming from Alaskan fires across North America and the Atlantic during mid-July 2004. (Image courtesy the NCAR MOPITT Team.)


Wildfires in Alaska and Canada in 2004 emitted about as much carbon monoxide as did human-related activities in the continental United States during the same time period, according to new research by the National Center for Atmospheric Research (NCAR). The fires also increased atmospheric concentrations of ground-level ozone across much of the Northern Hemisphere.

The NCAR study, which indicates the extent to which wildfires contribute to atmospheric pollution, was published this month in Geophysical Research Letters. The researchers used a novel combination of observing instruments, computer models, and numerical techniques that allowed them to distinguish between carbon monoxide coming from the wildfires and from other sources.

The team concluded that the Alaskan and Canadian wildfires emitted about 30 teragrams of carbon monoxide from June through August of last year. Because of the wildfires, ground-level concentrations of ozone increased by 25% or more in parts of the northern continental United States and by 10% as far away as Europe.



"It is important to see how the influence of these fires can reach large parts of the atmosphere, perhaps even over the entire Northern Hemisphere," says NCAR scientist Gabriele Pfister, the study’s lead author. "This has significant implications as societies take steps to improve air quality."

Carbon monoxide, a toxic gas that can affect human health even at low levels, is emitted by wildfires as well as by motor vehicles, industrial facilities, and other sources that do not completely burn carbon-containing fuels. Ground-level ozone, which affects human health in addition to damaging plants and influencing climate, is formed from reactions involving atmospheric pollutants, including carbon monoxide, in the presence of sunlight. Both pollutants are monitored by the Environmental Protection Agency. However, scientists have been unable to precisely determine regional emissions of carbon monoxide or the extent to which human and natural activities contribute to atmospheric concentrations of the gas.

Wildfires in Alaska and western Canada were particularly intense in the summer of 2004, largely because of unusually warm and dry weather. To quantify carbon monoxide emissions from the fires, the research team used a remote sensing instrument known as MOPITT (Measurements of Pollution in the Troposphere) that is operated by NCAR and the University of Toronto and flown on NASA’s Terra satellite. The scientists simulated the transport of the pollutants emitted by the fires and the resulting production of ozone with an NCAR computer model called MOZART (Model for Ozone and Related Chemical Tracers).

The team confirmed its results by using numerical techniques to compare simulated concentrations of carbon monoxide in the atmosphere with measurements taken by MOPITT. The researchers were able to get further confirmation by analyzing data from aircraft-mounted instruments that were taking part in a field project over North America and Europe.

Pfister says the team is continuing to look at data taken last year at observing stations as far away as the Azores in order to track the movement of carbon monoxide and ozone from the wildfires. As a follow-up, she and other scientists plan to use a similar combination of observations, modeling, and numerical techniques to look at both natural and human-related emissions of carbon monoxide in South America.

The research was funded by a NASA grant in partnership with the National Science Foundation, which is the primary sponsor of NCAR.

Nicole Gordon | EurekAlert!
Further information:
http://www.ucar.edu/news/releases/2005/wildfires.shtml
http://www.ucar.edu

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>