Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NCAR Analysis Shows Widespread Pollution from 2004 Wildfires

30.06.2005


A fire fighter works the line during the 2004 Alaska Solstice Complex fire. (Photo courtesy the Alaska Fire Service.)


This MOPITT image shows plumes of carbon monoxide streaming from Alaskan fires across North America and the Atlantic during mid-July 2004. (Image courtesy the NCAR MOPITT Team.)


Wildfires in Alaska and Canada in 2004 emitted about as much carbon monoxide as did human-related activities in the continental United States during the same time period, according to new research by the National Center for Atmospheric Research (NCAR). The fires also increased atmospheric concentrations of ground-level ozone across much of the Northern Hemisphere.

The NCAR study, which indicates the extent to which wildfires contribute to atmospheric pollution, was published this month in Geophysical Research Letters. The researchers used a novel combination of observing instruments, computer models, and numerical techniques that allowed them to distinguish between carbon monoxide coming from the wildfires and from other sources.

The team concluded that the Alaskan and Canadian wildfires emitted about 30 teragrams of carbon monoxide from June through August of last year. Because of the wildfires, ground-level concentrations of ozone increased by 25% or more in parts of the northern continental United States and by 10% as far away as Europe.



"It is important to see how the influence of these fires can reach large parts of the atmosphere, perhaps even over the entire Northern Hemisphere," says NCAR scientist Gabriele Pfister, the study’s lead author. "This has significant implications as societies take steps to improve air quality."

Carbon monoxide, a toxic gas that can affect human health even at low levels, is emitted by wildfires as well as by motor vehicles, industrial facilities, and other sources that do not completely burn carbon-containing fuels. Ground-level ozone, which affects human health in addition to damaging plants and influencing climate, is formed from reactions involving atmospheric pollutants, including carbon monoxide, in the presence of sunlight. Both pollutants are monitored by the Environmental Protection Agency. However, scientists have been unable to precisely determine regional emissions of carbon monoxide or the extent to which human and natural activities contribute to atmospheric concentrations of the gas.

Wildfires in Alaska and western Canada were particularly intense in the summer of 2004, largely because of unusually warm and dry weather. To quantify carbon monoxide emissions from the fires, the research team used a remote sensing instrument known as MOPITT (Measurements of Pollution in the Troposphere) that is operated by NCAR and the University of Toronto and flown on NASA’s Terra satellite. The scientists simulated the transport of the pollutants emitted by the fires and the resulting production of ozone with an NCAR computer model called MOZART (Model for Ozone and Related Chemical Tracers).

The team confirmed its results by using numerical techniques to compare simulated concentrations of carbon monoxide in the atmosphere with measurements taken by MOPITT. The researchers were able to get further confirmation by analyzing data from aircraft-mounted instruments that were taking part in a field project over North America and Europe.

Pfister says the team is continuing to look at data taken last year at observing stations as far away as the Azores in order to track the movement of carbon monoxide and ozone from the wildfires. As a follow-up, she and other scientists plan to use a similar combination of observations, modeling, and numerical techniques to look at both natural and human-related emissions of carbon monoxide in South America.

The research was funded by a NASA grant in partnership with the National Science Foundation, which is the primary sponsor of NCAR.

Nicole Gordon | EurekAlert!
Further information:
http://www.ucar.edu/news/releases/2005/wildfires.shtml
http://www.ucar.edu

More articles from Earth Sciences:

nachricht Mountain glaciers shrinking across the West
23.10.2017 | University of Washington

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>