Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Natural electrical potential difference affects water transport in clay

16.06.2005


Dutch Researcher Katja Heister investigated how electrical potential differences in clay layers influence the transport of salt and water through these. The outcomes of her research have important implications for new models of water transport, for example, those which predict the distribution of substances from waste deposits.



The transport of water and its solutes through clay plays an important role, for example, in the intrusion of seawater into the groundwater of coastal areas, the distribution of substances from polluted sludge or waste sites and the storage of radioactive or toxic waste in deep clay layers.

Until now, computer models for water transport did not consider transport due to electrical potential differences. However the effects of an electrical potential difference across different clay layers cannot be ignored and must be included in these models. The data and parameters obtained by Heister during her research can be used for this purpose.


Water transport in the soil is not only caused by hydrostatic pressure but also by differences in salt concentration and electrical potential difference. These processes are called chemical osmosis and electro-osmosis, respectively. Both a difference in water pressure and in salt concentration can give rise to an electrical potential difference over the clay layer that affects the transport of water (streaming potential) and solutes (membrane potential) through it. The potential differences arise because the clay layer acts like a semi-permeable membrane, in a similar manner to the wall of a biological cell.

In laboratory experiments, Heister examined the effect of streaming and membrane potentials on the transport of water and dissolved salts through a dense clay layer. She used different types of clay such as a commercially available Wyoming bentonite, Boom Clay from Belgium and Calais Clay from the polder Groot Mijdrecht in the Netherlands.

Heister observed significant streaming and membrane potentials in both the Wyoming bentonite and the Boom Clay. These potential differences give rise to a counterflow of water and salts through the clay. The Calais Clay strongly acidified in the laboratory to form an acid sulphate soil, in Dutch ’katteklei’. Heister could not observe any electrical potentials in this.

Dr Katja Heister | alfa
Further information:
http://www.nwo.nl/nwohome.nsf/pages/NWOP_6C8C67_Eng

More articles from Earth Sciences:

nachricht Large-Mouthed Fish Was Top Predator After Mass Extinction
26.07.2017 | Universität Zürich

nachricht Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds
25.07.2017 | University of Illinois at Urbana-Champaign

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Physicists gain new insights into nanosystems with spherical confinement

27.07.2017 | Materials Sciences

Seeing more with PET scans: New chemistry for medical imaging

27.07.2017 | Life Sciences

Did you know that infrared heat and UV light contribute to the success of your barbecue?

27.07.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>