Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oceanographers collect 1.5 million year record of climate change in Africa

19.04.2005


Scientists drill into sediments of one of the world’s oldest, deepest lakes to improve understanding of global climate change



Four University of Rhode Island oceanographers and colleagues from four other universities recently probed the ancient sediments beneath Lake Malawi in East Africa and recovered sediment samples that provide up to 1.5 million years of information about how climate in Africa has changed – the longest continuous record of such data ever collected from that continent.

Just completed last month, the challenging expedition was managed by URI Associate Professor of Oceanography Kate Moran, and the URI scientific team included Professor John King and graduate students Meghan Paulson, Nathan Vinhateirot and Chip Heil.


Lake Malawi is considered by many scientists to be among the natural wonders of the world. It is one of world’s deepest (700 meters) and oldest (more than 5 million years) lakes, and contains a rich assemblage of biological species found nowhere else on earth. Longer than Lake Michigan, it is situated in tropical latitudes that serve as the atmosphere’s heat engine, and the region plays a major role in driving global climate dynamics.

"The role of the tropics within the global climate system is not well understood at present. The results of this project will significantly improve our overall understanding of the global climate system," explained King, a professor of oceanography at the URI Graduate School of Oceanography.

Results from the research will also contribute to a better understanding of African climate and improved weather predictions in this region of recurring drought, famine and human suffering. The project has the added benefit of recovering an archive of environmental change that occurred in concert with human evolution in East Africa.

"The lake has restricted circulation and virtually no oxygen at the bottom, so each year seasonal deposition of sediment creates a pattern like tree rings," King said. "With the cores we collected we’ll be able to look at very old records of climate data simply by counting and analyzing the layers."

The researchers from URI, Syracuse University, the University of Minnesota-Duluth, the University of Arizona, and the University of Bergen (Norway) chose to drill Lake Malawi because its unique location and geology will enable them to reconstruct a high-resolution, tropical climate history stretching back through the time when massive ice sheets periodically covered high-latitude North America and Eurasia. The project was funded by the National Science Foundation and the International Continental Drilling Program.

In total, 623 meters of core samples were recovered from below the lake bottom, the oldest of which are about 1.5 million years in age. In the coming months, the scientists – joined by those from the Malawi Geological Survey -- will undertake a variety of analyses and inspections of the sediment samples to predict the future impact of global warming.

The project faced very difficult engineering and logistical challenges, the first of which required construction of a drilling vessel on land-locked Lake Malawi. The project used an old, 160-foot, fuel barge as the drilling platform, but had to ship into interior Africa the drilling rig, custom-designed sampling tools, and a portable dynamic positioning system designed to stabilize the drilling vessel in one spot in deep water for weeks at a time in sustained winds as high as 35 knots and waves of up to six feet in height.

"No one has done this kind of drilling on an interior lake before, much less one in Africa, so the technical and logistical obstacles we faced were quite challenging," Moran said.

Todd McLeish | EurekAlert!
Further information:
http://www.uri.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA laser communications to provide Orion faster connections

30.03.2017 | Physics and Astronomy

Reusable carbon nanotubes could be the water filter of the future, says RIT study

30.03.2017 | Studies and Analyses

Unique genome architectures after fertilisation in single-cell embryos

30.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>