Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique uses seismic ’garbage’ to view Earth’s interior

11.03.2005


Frees seismologists from ’tyranny’ of waiting for earthquakes



Seismologists have long relied on earthquakes or expensive tools like explosives to help create images of Earth’s interior, but a new method created by University of Colorado at Boulder (CU-Boulder) researchers will produce quicker, cheaper and clearer images.
Rather than waiting for earthquakes, the researchers have recovered surface-wave information from normal seismic noise that is constantly produced by fluctuations in the Earth’s atmosphere and oceans. Measuring surface waves is important because the information helps scientists get a clearer picture of the Earth’s interior, according to Michael Ritzwoller, director of CU-Boulder’s Center for Imaging the Earth’s Interior.

The method is described in the March 11 issue of the journal Science.



"This new technique will give us a better fundamental understanding of the planet by providing much better resolution of Earth’s interior," Ritzwoller said. "It also will diminish what is known in seismology as the ’tyranny of earthquakes,’ which means having to wait for an earthquake to happen to do our jobs."

The new method promises significant improvements in the resolution and accuracy of crust and upper mantle images down to 60 miles or more within the Earth, particularly when used with seismic projects like USArray, according to Nikolai Shapiro, a research associate in the Center for Imaging the Earth’s Interior and the study’s chief author.

Coupled with existing and emerging technology, such as USArray, the new measuring technique will lead to a better fundamental understanding of the structure of the planet and may help save lives in the process, Ritzwoller said. A component of the National Science Foundation’s (NSF) EarthScope program, USArray includes hundreds of portable seismometers that in coming years will be moved over the entire country, producing images of the Earth’s interior to aid in earthquake risk assessment.

"The authors’ application of what used to be ’seismic noise’ to the detailed mapping of the crust and upper mantle will have significant impact on earth science and on seismic hazard mitigation," says James Whitcomb, head of NSF’s deep earth processes section, which funded the research. "This innovative research foretells what’s to come from EarthScope."

Researchers have for years been constructing tomographic images of Earth’s crust and upper mantle from waves generated by earthquakes. That method, known as seismic tomography, reconstructs Earth’s inner structure on a computer screen, slice by slice. The new technique is similar, but is based on organizing ambient seismic noise, which is typically discarded as seismic "garbage."

Seismic tomography is like doing a medical CT scan of the Earth, Ritzwoller said. But when people have a CT scan, doctors are in control and can make images at will. Seismologists can’t control when an earthquake happens, so they can either wait for another one or set off explosives to create their own image-generating waves.

"To move beyond these limitations requires observational methods based on seismic sources other than earthquakes, which is what our method offers," said Shapiro.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Earth Sciences:

nachricht Satellites reveal bird habitat loss in California
28.03.2017 | Duke University

nachricht Northern oceans pumped CO2 into the atmosphere
27.03.2017 | CAGE - Center for Arctic Gas Hydrate, Climate and Environment

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>