Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U. of Colorado researchers pioneer new technique for imaging Earth’s interior

11.03.2005


Seismologists have long relied on earthquakes or expensive tools like explosives to help create images of Earth’s interior, but a new method created by University of Colorado at Boulder researchers will produce quicker, cheaper and clearer images.



Rather than waiting for earthquakes, the researchers have now recovered surface wave information from ambient seismic noise that is constantly produced by fluctuations in the Earth’s atmosphere and oceans. Measuring surface waves is important because they help scientists get a clearer picture of the Earth’s interior, according to Michael Ritzwoller, director of CU-Boulder’s Center for Imaging the Earth’s Interior and a physics professor.

"This new technique will give us a better fundamental understanding of the planet by providing much better resolution of Earth’s interior," Ritzwoller said. "It also will diminish what is known in seismology as the ’tyranny of earthquakes,’ which means having to wait for an earthquake to happen to do our jobs."


The new method promises significant improvements in the resolution and accuracy of crustal and upper mantle images down to 60 miles or more within the Earth, particularly when used in tandem with seismic projects like USArray, according to Nikolai Shapiro, a research associate in the Center for Imaging the Earth’s Interior and the study’s chief author.

A paper on the technique appears in the March 11 issue of the journal Science. Co-authors include Ritzwoller of CU-Boulder and Michel Campillo and Laurent Stehly of the Laboratory of Geophysics and Tectonophysics at the Joseph Fourier University in Grenoble, France.

In a process similar to a medical CT scan, researchers have for some years been constructing tomographic images of Earth’s crust and upper mantle from waves generated by earthquakes. This method, known as seismic tomography, reconstructs Earth’s inner structure on a computer screen, slice by slice. The new CU-Boulder method is similar, but is based on organizing ambient seismic noise, which is typically discarded as seismic garbage.

While the new method offers no help in predicting when earthquakes will happen, it can provide information for risk assessment. And it will be a very useful tool for USArray researchers, Ritzwoller said.

"The risk that the public faces is not only from the earthquake, but how waves emanated from the earthquake interact with the inner-structure of the Earth," Ritzwoller said. This new measuring technique, coupled with existing and emerging technology such as USArray, will lead to a better fundamental understanding of the structure of the planet and may help save lives in the process, he said.

A component of the National Science Foundation’s program EarthScope, USArray is a massive seismic project using hundreds of portable seismometers that in coming years will be moved across the entire country, producing images of the Earth’s interior. The project’s goal is producing new data about the Earth’s interior, including earthquake risk assessment. The CU-Boulder findings should be extremely useful to USArray researchers, according to Ritzwoller.

Seismic tomography is like doing a medical CT scan of the Earth, Ritzwoller said. During a CT scan, the body goes into the machine, which takes multiple X-rays and then uses a computer to construct cross-sectional views of the body or body parts. Seismologists have previously relied on waves generated from earthquakes to reconstruct images of the inner Earth.

However, when people have a CT scan, doctors are in control and can make images at will. Seismologists can’t control when an earthquake happens, so they can either wait, or they can set off explosives to create their own waves to generate images of the Earth’s interior.

But each of these methods has drawbacks. "To move beyond these limitations requires observational methods based on seismic sources other than earthquakes, which is what our method offers," said Shapiro.

Michael Ritzwoller | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Earth Sciences:

nachricht PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target
22.05.2018 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

nachricht Monitoring lava lake levels in Congo volcano
16.05.2018 | Seismological Society of America

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>