Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U. of Colorado researchers pioneer new technique for imaging Earth’s interior

11.03.2005


Seismologists have long relied on earthquakes or expensive tools like explosives to help create images of Earth’s interior, but a new method created by University of Colorado at Boulder researchers will produce quicker, cheaper and clearer images.



Rather than waiting for earthquakes, the researchers have now recovered surface wave information from ambient seismic noise that is constantly produced by fluctuations in the Earth’s atmosphere and oceans. Measuring surface waves is important because they help scientists get a clearer picture of the Earth’s interior, according to Michael Ritzwoller, director of CU-Boulder’s Center for Imaging the Earth’s Interior and a physics professor.

"This new technique will give us a better fundamental understanding of the planet by providing much better resolution of Earth’s interior," Ritzwoller said. "It also will diminish what is known in seismology as the ’tyranny of earthquakes,’ which means having to wait for an earthquake to happen to do our jobs."


The new method promises significant improvements in the resolution and accuracy of crustal and upper mantle images down to 60 miles or more within the Earth, particularly when used in tandem with seismic projects like USArray, according to Nikolai Shapiro, a research associate in the Center for Imaging the Earth’s Interior and the study’s chief author.

A paper on the technique appears in the March 11 issue of the journal Science. Co-authors include Ritzwoller of CU-Boulder and Michel Campillo and Laurent Stehly of the Laboratory of Geophysics and Tectonophysics at the Joseph Fourier University in Grenoble, France.

In a process similar to a medical CT scan, researchers have for some years been constructing tomographic images of Earth’s crust and upper mantle from waves generated by earthquakes. This method, known as seismic tomography, reconstructs Earth’s inner structure on a computer screen, slice by slice. The new CU-Boulder method is similar, but is based on organizing ambient seismic noise, which is typically discarded as seismic garbage.

While the new method offers no help in predicting when earthquakes will happen, it can provide information for risk assessment. And it will be a very useful tool for USArray researchers, Ritzwoller said.

"The risk that the public faces is not only from the earthquake, but how waves emanated from the earthquake interact with the inner-structure of the Earth," Ritzwoller said. This new measuring technique, coupled with existing and emerging technology such as USArray, will lead to a better fundamental understanding of the structure of the planet and may help save lives in the process, he said.

A component of the National Science Foundation’s program EarthScope, USArray is a massive seismic project using hundreds of portable seismometers that in coming years will be moved across the entire country, producing images of the Earth’s interior. The project’s goal is producing new data about the Earth’s interior, including earthquake risk assessment. The CU-Boulder findings should be extremely useful to USArray researchers, according to Ritzwoller.

Seismic tomography is like doing a medical CT scan of the Earth, Ritzwoller said. During a CT scan, the body goes into the machine, which takes multiple X-rays and then uses a computer to construct cross-sectional views of the body or body parts. Seismologists have previously relied on waves generated from earthquakes to reconstruct images of the inner Earth.

However, when people have a CT scan, doctors are in control and can make images at will. Seismologists can’t control when an earthquake happens, so they can either wait, or they can set off explosives to create their own waves to generate images of the Earth’s interior.

But each of these methods has drawbacks. "To move beyond these limitations requires observational methods based on seismic sources other than earthquakes, which is what our method offers," said Shapiro.

Michael Ritzwoller | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Earth Sciences:

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

nachricht How is climate change affecting fauna in the Arctic?
22.05.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>