Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U. of Colorado researchers pioneer new technique for imaging Earth’s interior

11.03.2005


Seismologists have long relied on earthquakes or expensive tools like explosives to help create images of Earth’s interior, but a new method created by University of Colorado at Boulder researchers will produce quicker, cheaper and clearer images.



Rather than waiting for earthquakes, the researchers have now recovered surface wave information from ambient seismic noise that is constantly produced by fluctuations in the Earth’s atmosphere and oceans. Measuring surface waves is important because they help scientists get a clearer picture of the Earth’s interior, according to Michael Ritzwoller, director of CU-Boulder’s Center for Imaging the Earth’s Interior and a physics professor.

"This new technique will give us a better fundamental understanding of the planet by providing much better resolution of Earth’s interior," Ritzwoller said. "It also will diminish what is known in seismology as the ’tyranny of earthquakes,’ which means having to wait for an earthquake to happen to do our jobs."


The new method promises significant improvements in the resolution and accuracy of crustal and upper mantle images down to 60 miles or more within the Earth, particularly when used in tandem with seismic projects like USArray, according to Nikolai Shapiro, a research associate in the Center for Imaging the Earth’s Interior and the study’s chief author.

A paper on the technique appears in the March 11 issue of the journal Science. Co-authors include Ritzwoller of CU-Boulder and Michel Campillo and Laurent Stehly of the Laboratory of Geophysics and Tectonophysics at the Joseph Fourier University in Grenoble, France.

In a process similar to a medical CT scan, researchers have for some years been constructing tomographic images of Earth’s crust and upper mantle from waves generated by earthquakes. This method, known as seismic tomography, reconstructs Earth’s inner structure on a computer screen, slice by slice. The new CU-Boulder method is similar, but is based on organizing ambient seismic noise, which is typically discarded as seismic garbage.

While the new method offers no help in predicting when earthquakes will happen, it can provide information for risk assessment. And it will be a very useful tool for USArray researchers, Ritzwoller said.

"The risk that the public faces is not only from the earthquake, but how waves emanated from the earthquake interact with the inner-structure of the Earth," Ritzwoller said. This new measuring technique, coupled with existing and emerging technology such as USArray, will lead to a better fundamental understanding of the structure of the planet and may help save lives in the process, he said.

A component of the National Science Foundation’s program EarthScope, USArray is a massive seismic project using hundreds of portable seismometers that in coming years will be moved across the entire country, producing images of the Earth’s interior. The project’s goal is producing new data about the Earth’s interior, including earthquake risk assessment. The CU-Boulder findings should be extremely useful to USArray researchers, according to Ritzwoller.

Seismic tomography is like doing a medical CT scan of the Earth, Ritzwoller said. During a CT scan, the body goes into the machine, which takes multiple X-rays and then uses a computer to construct cross-sectional views of the body or body parts. Seismologists have previously relied on waves generated from earthquakes to reconstruct images of the inner Earth.

However, when people have a CT scan, doctors are in control and can make images at will. Seismologists can’t control when an earthquake happens, so they can either wait, or they can set off explosives to create their own waves to generate images of the Earth’s interior.

But each of these methods has drawbacks. "To move beyond these limitations requires observational methods based on seismic sources other than earthquakes, which is what our method offers," said Shapiro.

Michael Ritzwoller | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>