Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Giant Neutrino Telescope Takes Shape - Important Milestone for the International IceCube Project


A key first step has been taken in the construction of IceCube, a giant neutrino telescope spanning a volume of one cubic kilometer of ice at the South Pole: Working under harsh Antarctic conditions, an international team of scientists, engineers and technicians – among them scientists from the DESY research center – has successfully deployed a first critical part of the telescope, a string of 60 optical detectors, in a 2.4-kilometer-deep hole drilled into the Antarctic ice. Comprising a total of at least 70 such strings, the $272 million telescope will be the largest scientific instrument ever built. Designed to detect cosmic neutrinos – ghost-like high-energy particles from deep space – it will open up a new window to the sky and allow scientists to investigate the still-mysterious sources of cosmic rays.

IceCube is a joint international effort involving more than 20 institutions from the USA, Germany, Sweden, Belgium, the Netherlands, Great Britain, Japan and New Zealand. German contributors are the research center DESY with its location in Zeuthen close to Berlin, and universities in Berlin, Dortmund, Mainz and Wuppertal. The major part of the telescope and its construction is being financed by the National Science Foundation (NSF), with $30 million in support coming from European partners.

In a common effort, DESY and the German universities will deliver more than a quarter of the around 4200 optical modules that are to be deployed over the next six years. 1300 volleyball-sized glass spheres, each of them housing a highly sensitive light detector and sophisticated electronics, will be assembled and tested at DESY in Zeuthen. “The first IceCube string, which was successfully lowered into the ice in late January, already comprises eight optical modules produced in Zeuthen,” says physicists Rolf Nahnhauer, who is responsible for the production of the modules at DESY. Setting the string into the Antarctic ice required drilling a 2.4-kilometer-deep hole using a novel hot-water drill. “The detectors are then frozen in place in the ice,” explains Nahnhauer. “The first string is working perfectly, and data from the string and the surface tanks is now being transmitted to the Northern Hemisphere.”

The IceCube telescope uses the crystal-clear ice of the South Pole to look for the signatures of high-energy cosmic neutrinos, elusive particles produced in violent cosmic events such as colliding galaxies, distant black holes, quasars and other phenomena occurring at the very margins of the universe. Cosmic rays, which are composed of protons, are thought to be generated by these same events. But protons are largely deflected by the magnetic fields of interstellar space, preventing scientists from tracing them back to their points of origin. Cosmic neutrinos, on the other hand, have the unique ability to travel billions of light years without being absorbed or deflected by stars, galaxies, and interstellar magnetic fields. This ghost-like property promises unprecedented information about the early universe and the very violent objects that populate the universe. However, it also makes detecting cosmic neutrinos extraordinarily difficult. Huge detectors are required to capture a few of them, and the experiments have to be buried deep below the surface to shield them against any unwanted radiation noise, such as light or normal cosmic radiation.

With its detector volume of one cubic kilometer, IceCube will dwarf existing neutrino detectors and become the largest particle detector ever built. It will be 30 times larger than its predecessor telescope AMANDA (“Antarctic Muon and Neutrino Detector Array”), around which it is being built. AMANDA in turn is already 30 times bigger than the famous Super-Kamiokande neutrino detector located in a Japanese mine. Since 1997, AMANDA has detected more than 4000 neutrinos. Up to now, however, the sky map of these neutrinos does not exhibit clear hints of neutrinos from extraterrestrial sources, so most of them are supposed to be generated by nuclear interactions in the atmosphere of the Earth. Using IceCube, scientists hope to finally track down the telltale signatures of neutrinos generated in distant cosmic events. “We have a shopping list of expectations on what we might see with IceCube, ranging from neutrinos from giant cosmic particle accelerators to signs of the dark matter that fills our universe,” says Christian Spiering from DESY, European spokesman of AMANDA and one of the leading members of the IceCube team. “But of course, as happened in fact in most cases when a new observational window to the cosmos was opened, we hope that we will find something new – something we cannot even imagine today.”

Establishing the project at the South Pole, setting surface equipment in place and testing the powerful new drill meant the IceCube team had only a two-week window during this year’s Antarctic summer to drill the first hole and deploy the first string. Next year, with about half a three-month Austral summer season of boring time, the goal will be to drill holes for and deploy ten or more IceCube strings.

Petra Folkerts | alfa
Further information:

More articles from Earth Sciences:

nachricht Gas hydrate research: Advanced knowledge and new technologies
23.03.2018 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

nachricht New technologies and computing power to help strengthen population data
22.03.2018 | University of Southampton

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>