Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant Neutrino Telescope Takes Shape - Important Milestone for the International IceCube Project

16.02.2005


A key first step has been taken in the construction of IceCube, a giant neutrino telescope spanning a volume of one cubic kilometer of ice at the South Pole: Working under harsh Antarctic conditions, an international team of scientists, engineers and technicians – among them scientists from the DESY research center – has successfully deployed a first critical part of the telescope, a string of 60 optical detectors, in a 2.4-kilometer-deep hole drilled into the Antarctic ice. Comprising a total of at least 70 such strings, the $272 million telescope will be the largest scientific instrument ever built. Designed to detect cosmic neutrinos – ghost-like high-energy particles from deep space – it will open up a new window to the sky and allow scientists to investigate the still-mysterious sources of cosmic rays.



IceCube is a joint international effort involving more than 20 institutions from the USA, Germany, Sweden, Belgium, the Netherlands, Great Britain, Japan and New Zealand. German contributors are the research center DESY with its location in Zeuthen close to Berlin, and universities in Berlin, Dortmund, Mainz and Wuppertal. The major part of the telescope and its construction is being financed by the National Science Foundation (NSF), with $30 million in support coming from European partners.

In a common effort, DESY and the German universities will deliver more than a quarter of the around 4200 optical modules that are to be deployed over the next six years. 1300 volleyball-sized glass spheres, each of them housing a highly sensitive light detector and sophisticated electronics, will be assembled and tested at DESY in Zeuthen. “The first IceCube string, which was successfully lowered into the ice in late January, already comprises eight optical modules produced in Zeuthen,” says physicists Rolf Nahnhauer, who is responsible for the production of the modules at DESY. Setting the string into the Antarctic ice required drilling a 2.4-kilometer-deep hole using a novel hot-water drill. “The detectors are then frozen in place in the ice,” explains Nahnhauer. “The first string is working perfectly, and data from the string and the surface tanks is now being transmitted to the Northern Hemisphere.”


The IceCube telescope uses the crystal-clear ice of the South Pole to look for the signatures of high-energy cosmic neutrinos, elusive particles produced in violent cosmic events such as colliding galaxies, distant black holes, quasars and other phenomena occurring at the very margins of the universe. Cosmic rays, which are composed of protons, are thought to be generated by these same events. But protons are largely deflected by the magnetic fields of interstellar space, preventing scientists from tracing them back to their points of origin. Cosmic neutrinos, on the other hand, have the unique ability to travel billions of light years without being absorbed or deflected by stars, galaxies, and interstellar magnetic fields. This ghost-like property promises unprecedented information about the early universe and the very violent objects that populate the universe. However, it also makes detecting cosmic neutrinos extraordinarily difficult. Huge detectors are required to capture a few of them, and the experiments have to be buried deep below the surface to shield them against any unwanted radiation noise, such as light or normal cosmic radiation.

With its detector volume of one cubic kilometer, IceCube will dwarf existing neutrino detectors and become the largest particle detector ever built. It will be 30 times larger than its predecessor telescope AMANDA (“Antarctic Muon and Neutrino Detector Array”), around which it is being built. AMANDA in turn is already 30 times bigger than the famous Super-Kamiokande neutrino detector located in a Japanese mine. Since 1997, AMANDA has detected more than 4000 neutrinos. Up to now, however, the sky map of these neutrinos does not exhibit clear hints of neutrinos from extraterrestrial sources, so most of them are supposed to be generated by nuclear interactions in the atmosphere of the Earth. Using IceCube, scientists hope to finally track down the telltale signatures of neutrinos generated in distant cosmic events. “We have a shopping list of expectations on what we might see with IceCube, ranging from neutrinos from giant cosmic particle accelerators to signs of the dark matter that fills our universe,” says Christian Spiering from DESY, European spokesman of AMANDA and one of the leading members of the IceCube team. “But of course, as happened in fact in most cases when a new observational window to the cosmos was opened, we hope that we will find something new – something we cannot even imagine today.”

Establishing the project at the South Pole, setting surface equipment in place and testing the powerful new drill meant the IceCube team had only a two-week window during this year’s Antarctic summer to drill the first hole and deploy the first string. Next year, with about half a three-month Austral summer season of boring time, the goal will be to drill holes for and deploy ten or more IceCube strings.

Petra Folkerts | alfa
Further information:
http://www-zeuthen.desy.de/nuastro/

More articles from Earth Sciences:

nachricht A new dead zone in the Indian Ocean could impact future marine nutrient balance
06.12.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht NASA's AIM observes early noctilucent ice clouds over Antarctica
05.12.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>