Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Record cold winter may increase ozone hole over North Europe


European scientists confirmed that Arctic high atmosphere is reaching the lowest ever temperatures this winter, warning that destruction of the protective ozone layer is substantially increased under very cold conditions. First signs of ozone loss have already been detected. The ozone layer is located in the so called stratosphere, the lowest layer of the atmosphere, at an altitude of about 8 km in the Poles, and its function is to protect the earth’s surface from harmful solar UV radiation. More than 170 countries have ratified the Montreal Protocol, an environmental treaty established in 1987 to protect the ozone layer. Should further cooling of the Arctic stratosphere occur, increasing ozone losses can be expected for the next couple of decades. A hole in the ozone layer can lead to intensified UV harmful radiation affecting inhabited Polar regions and Scandinavia, possibly down to central Europe. This could have consequences for human health (increased cases of skin cancer) as well as for biodiversity.

“The Arctic has experienced an extremely harsh winter. The first signs of ozone loss have now been observed, and large ozone losses are expected to occur if the cold conditions persist”, says European Commissioner for Science and Research Janez Potonik.

European scientists observe changes in the thickness of the ozone layer in the Arctic on a daily basis, as part of the European research initiative SCOUT-03, a very useful tool to predict future development of the ozone layer in global climate models, involving 59 institutions and over 200 scientists from 19 countries.

Measurements from the ground-based network of atmospheric observing stations and from satellites are being combined to investigate the ozone loss in the coming weeks. The extremely cold conditions are of concern and scientists will be addressing a number of questions: How large will the ozone loss be? What will be the increase in UV radiation and in which countries will they occur? Why has the Arctic stratosphere cooled in December over the past 50 years? Are the conditions more favourable for large ozone losses than before?

Overall, a decrease in total ozone in the Arctic region has been observed since 1980, although there is considerable year-to-year variation in the observed values. This variability in the ozone loss is to be contrasted with the Antarctic, where nearly complete ozone loss has taken place in almost all winters since the late 1980s. This difference is linked to the Arctic warmer winter conditions. The concern is that the Arctic appears to be moving into Antarctic-like conditions which will result in an increase in UV radiation levels that will have consequences on human health in northern hemisphere countries. The Parties to the Montreal Protocol meet annually to decide on further improvements to reduce and eventually phase out ozone-depleting substances, thereby encouraging faster recovery of the ozone layer.

Julia Acevedo | alfa
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>