Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough in climate research

20.01.2005


New research suggests that climate warming may be occurring even faster than previously recognised



A long standing puzzle that has haunted climate researchers looking at the fate of carbon stored in the world’s soils, has now been resolved. The research suggests that climate warming may be occurring even faster than previously recognised.

The international team of researchers, led by Bristol University and reporting in Nature [20 January 2005], show that an apparent biological adaptation of micro-organisms that break down carbon in soils, thereby releasing carbon dioxide into the atmosphere, can in fact be explained by the widely contrasting properties of those organic carbons.


Recent reports of laboratory experiments have stated that the micro-organisms responsible for soil carbon decomposition gradually acclimatise to an increase in heat and adjust the rate at which carbon is released into the atmosphere, such that it is effectively released at a steady rate. However, this does not agree with long-established rules of physical chemistry that predict that as the climate warms these reactions should speed up, resulting in an increase in the amount of carbon dioxide released.

The team of researchers at Bristol University and the Natural Environment Research Council’s QUEST programme, the Max-Planck-Institute for Biogeochemistry in Germany, and the National Centre for Atmospheric Research in Colorado, has now managed to solve the puzzle, bringing the apparent contradictions from laboratory experiments in line with theoretical predictions.

They show that what looked liked a biological adaptation of the micro-organisms can in fact be explained by widely contrasting properties of organic carbon present in soils.

These properties range from highly digestible (labile) sugar-like compounds to almost stable, charcoal-like compounds which the micro-organisms have difficulty breaking down. Such an extreme mixture has so far prevented theoretical interpretation of the laboratory experiments.

The next step will be to apply the new theory in complex climate simulations, using so-called Earth System Models. So far, these models only use properties from the labile soil carbon because they are easier to measure. But an estimated 90% of the carbon locked up in the world’s soil is made up of the more stable components, which must now be built into the model.

The new results predict that since the micro-organisms are not keeping the release of carbon dioxide from the soil at a steady state, as previously thought, an increase in climate temperatures will result in an increase in the rate at which the stable components decompose. This will lead to even more carbon dioxide being released into the atmosphere and more rapid climate change.

Cherry Lewis | EurekAlert!
Further information:
http://www.bristol.ac.uk

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>