Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough in climate research

20.01.2005


New research suggests that climate warming may be occurring even faster than previously recognised



A long standing puzzle that has haunted climate researchers looking at the fate of carbon stored in the world’s soils, has now been resolved. The research suggests that climate warming may be occurring even faster than previously recognised.

The international team of researchers, led by Bristol University and reporting in Nature [20 January 2005], show that an apparent biological adaptation of micro-organisms that break down carbon in soils, thereby releasing carbon dioxide into the atmosphere, can in fact be explained by the widely contrasting properties of those organic carbons.


Recent reports of laboratory experiments have stated that the micro-organisms responsible for soil carbon decomposition gradually acclimatise to an increase in heat and adjust the rate at which carbon is released into the atmosphere, such that it is effectively released at a steady rate. However, this does not agree with long-established rules of physical chemistry that predict that as the climate warms these reactions should speed up, resulting in an increase in the amount of carbon dioxide released.

The team of researchers at Bristol University and the Natural Environment Research Council’s QUEST programme, the Max-Planck-Institute for Biogeochemistry in Germany, and the National Centre for Atmospheric Research in Colorado, has now managed to solve the puzzle, bringing the apparent contradictions from laboratory experiments in line with theoretical predictions.

They show that what looked liked a biological adaptation of the micro-organisms can in fact be explained by widely contrasting properties of organic carbon present in soils.

These properties range from highly digestible (labile) sugar-like compounds to almost stable, charcoal-like compounds which the micro-organisms have difficulty breaking down. Such an extreme mixture has so far prevented theoretical interpretation of the laboratory experiments.

The next step will be to apply the new theory in complex climate simulations, using so-called Earth System Models. So far, these models only use properties from the labile soil carbon because they are easier to measure. But an estimated 90% of the carbon locked up in the world’s soil is made up of the more stable components, which must now be built into the model.

The new results predict that since the micro-organisms are not keeping the release of carbon dioxide from the soil at a steady state, as previously thought, an increase in climate temperatures will result in an increase in the rate at which the stable components decompose. This will lead to even more carbon dioxide being released into the atmosphere and more rapid climate change.

Cherry Lewis | EurekAlert!
Further information:
http://www.bristol.ac.uk

More articles from Earth Sciences:

nachricht From volcano's slope, NASA instrument looks sky high and to the future
27.04.2017 | NASA/Goddard Space Flight Center

nachricht Penn researchers quantify the changes that lightning inspires in rock
27.04.2017 | University of Pennsylvania

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>