Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Anthropologists find 4.5 million-year-old hominid fossils in Ethiopia

20.01.2005


Photo by: Sileshi Semaw
IU Bloomington paleoanthropologist Sileshi Semaw holds the fossil of a hominid mandible (lower jaw bone) believed to be about 4.5 million years old


Scientists from Indiana University Bloomington and seven other institutions have unearthed skeletal fossils of a human ancestor believed to have lived about 4.5 million years ago. The fossils, described in this week’s Nature (Jan. 20), will help scientists piece together the mysterious transformation of primitive chimp-like hominids into more human forms.

The fossils were retrieved from the Gona Study Area in northern Ethiopia, only one of two sites to yield fossil remains of Ardipithecus ramidus. "A few windows are now opening in Africa to glance into the fossil evidence on the earliest hominids," said IUB paleoanthropologist Sileshi Semaw, who led the research.

Semaw and colleagues also report new evidence that suggests the human ancestors lived in close quarters with a menagerie of antelope, rhinos, monkeys, giraffes and hippos in a northern Ethiopia that was far wetter than it is today. The environmental reconstructions suggest a mosaic of habitats, from woodlands to grasslands. Research is continuing at Gona to determine which habitats A. ramidus preferred.



"We now have more than 30 fossils from at least nine individuals dated between 4.3 and 4.5 million years old," said Semaw, Gona Palaeoanthropological Research Project director and Stone Age Institute research scientist. The Stone Age Institute, a new research center dedicated to the study of early human evolution and culture, is affiliated with Indiana University’s CRAFT, the Center for Research into the Anthropological Foundations of Technology.

In their letter to Nature, Semaw and his coauthors describe parts of one upper and two lower jaw bones -- with teeth still intact -- several loose teeth, part of a toe bone and intact finger bones. The scientists believe the fossils belong to nine individuals of the species A. ramidus. The scientists used argon isotope dating of volcanic materials found in the vicinity of the fossils to estimate their age.

In the 11 years since the naming of A. ramidus by University of California Berkeley anthropologist Tim White and colleagues, only a handful of fossils from the species have been found, and only at two sites -- the Middle Awash and Gona, both in Ethiopia. Other fossils of slightly older age are known in Kenya and Chad. Anthropologists working in Ethiopia believe Ardipithecus is the first hominid genus -- that is, human ancestors who lived just after a split with the lineage that produced modern chimpanzees.

Despite the millions of years that separate us, modern humans have a few things in common with A. ramidus. Fossils from Gona and elsewhere suggest that the ancient hominid walked on two feet and had diamond-shaped upper canines, not the "v"-shaped ones chimps use to chomp. Outwardly, however, A. ramidus would appear a lot more chimpanzee-like than human.

Gona has turned out to be a productive dig site. In a Nature cover story (Jan. 23, 1997), Semaw and colleagues reported the oldest known stone tools used by ancestral humans. The Gona artifacts showed that as early as 2.5 million years ago, hominids were remarkably skilled toolmakers. Last month (December 2004), Semaw coauthored a paper in Geological Society of America Bulletin summarizing Gona’s geological properties and the site’s cornucopia of hominid fossils spanning several million years. (Science magazine gave the article an "Editor’s Choice" nod.)

David Bricker | EurekAlert!
Further information:
http://www.indiana.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA laser communications to provide Orion faster connections

30.03.2017 | Physics and Astronomy

Reusable carbon nanotubes could be the water filter of the future, says RIT study

30.03.2017 | Studies and Analyses

Unique genome architectures after fertilisation in single-cell embryos

30.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>