Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Graphic video simulation of Indian Ocean tsunami

14.01.2005


Copyright © Cornell University


Cornell University researchers have created a video simulation of the deadly Dec. 26 Indian Ocean tsunami that shows in graphic detail how the massive wave system spread outward from the epicenter of an undersea earthquake northwest of Sumatra, Indonesia.

The simulation makes it clear how the tsunami struck the coastlines of Indonesia, Thailand, Sri Lanka and India with such devastating force, then continued as far as East Africa.

The video, about 7 MB, can be seen online at http://www.news.cornell.edu/releases/Jan05/tsunamiVid320.html .



A 640x480 Quicktime version, about 43 MB, is available at http://www.news.cornell.edu/releases/Jan05/tsunamiVid640.html . (This will take several minutes to load even on a fast Internet connection.)

The video compresses 10 hours and 30 minutes in the life of the tidal wave into one minute, showing in contrasting colors the advancing high water and the trough behind it, as well as the receding waters observed along coastlines near the epicenter before the wave struck. It shows high water in red and low in blue. The more intense the color, the greater the displacement from sea level. A clock in the animation starts at the moment of the Sumatra earthquake.

The computer simulation was created using a numerical model called the Cornell Multigrid Coupled Tsunami model, or COMCOT, developed by Philip Liu, Cornell professor of civil and environmental engineering, and graduate student Xiaoming Wang. The model was originally created by Japanese scientists, further developed by Liu and several of his students, and most recently refined and updated by Wang. Wang created the final video with Tso-Ren Wu, a Cornell post-doctoral researcher.

Liu, who helped develop the Pacific Ocean tsunami warning system, is currently leading a delegation of scientists studying the effects of the tsunami in Sri Lanka, and will report findings at a symposium there Jan. 15. The computer model assumes that the up-and-down motion of the sea floor caused by the earthquake occurred in just a few seconds, so the sea water above was deformed in the same way as the earth below, since there was no time for the water to get out of the way. Tsunamis are created when water is lifted by energy generated by earthquakes and then falls back.

Based on earthquake data and information about the topography of the sea floor provided by the U.S. National Oceanic and Atmospheric Administration (NOAA), the COMCOT model calculates the elevation of the sea surface at a series of grid points on a map of the area over a period of time. The video is generated from this information. How closely the simulation corresponds to what actually happened will not be determined until data is collected in the field, Wang said.

Accurate seismic data generally is available only after an event is over. With the future development of seismic technology, a more accurate and rapid estimation of seismic data might be provided, he said. It then might be possible to use such simulations to predict tsunami behavior immediately after an earthquake is detected.

Bill Steele | EurekAlert!
Further information:
http://www.cornell.edu
http://www.news.cornell.edu/releases/Jan05/tsunamiVid320.html
http://www.news.cornell.edu/releases/Jan05/tsunamiVid640.html

More articles from Earth Sciences:

nachricht A promising target in the quest for a 1-million-year-old Antarctic ice core
24.05.2018 | University of Washington

nachricht Tropical Peat Swamps: Restoration of Endangered Carbon Reservoirs
24.05.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

Beyond the limits of conventional electronics: stable organic molecular nanowires

24.05.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>