Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Graphic video simulation of Indian Ocean tsunami

14.01.2005


Copyright © Cornell University


Cornell University researchers have created a video simulation of the deadly Dec. 26 Indian Ocean tsunami that shows in graphic detail how the massive wave system spread outward from the epicenter of an undersea earthquake northwest of Sumatra, Indonesia.

The simulation makes it clear how the tsunami struck the coastlines of Indonesia, Thailand, Sri Lanka and India with such devastating force, then continued as far as East Africa.

The video, about 7 MB, can be seen online at http://www.news.cornell.edu/releases/Jan05/tsunamiVid320.html .



A 640x480 Quicktime version, about 43 MB, is available at http://www.news.cornell.edu/releases/Jan05/tsunamiVid640.html . (This will take several minutes to load even on a fast Internet connection.)

The video compresses 10 hours and 30 minutes in the life of the tidal wave into one minute, showing in contrasting colors the advancing high water and the trough behind it, as well as the receding waters observed along coastlines near the epicenter before the wave struck. It shows high water in red and low in blue. The more intense the color, the greater the displacement from sea level. A clock in the animation starts at the moment of the Sumatra earthquake.

The computer simulation was created using a numerical model called the Cornell Multigrid Coupled Tsunami model, or COMCOT, developed by Philip Liu, Cornell professor of civil and environmental engineering, and graduate student Xiaoming Wang. The model was originally created by Japanese scientists, further developed by Liu and several of his students, and most recently refined and updated by Wang. Wang created the final video with Tso-Ren Wu, a Cornell post-doctoral researcher.

Liu, who helped develop the Pacific Ocean tsunami warning system, is currently leading a delegation of scientists studying the effects of the tsunami in Sri Lanka, and will report findings at a symposium there Jan. 15. The computer model assumes that the up-and-down motion of the sea floor caused by the earthquake occurred in just a few seconds, so the sea water above was deformed in the same way as the earth below, since there was no time for the water to get out of the way. Tsunamis are created when water is lifted by energy generated by earthquakes and then falls back.

Based on earthquake data and information about the topography of the sea floor provided by the U.S. National Oceanic and Atmospheric Administration (NOAA), the COMCOT model calculates the elevation of the sea surface at a series of grid points on a map of the area over a period of time. The video is generated from this information. How closely the simulation corresponds to what actually happened will not be determined until data is collected in the field, Wang said.

Accurate seismic data generally is available only after an event is over. With the future development of seismic technology, a more accurate and rapid estimation of seismic data might be provided, he said. It then might be possible to use such simulations to predict tsunami behavior immediately after an earthquake is detected.

Bill Steele | EurekAlert!
Further information:
http://www.cornell.edu
http://www.news.cornell.edu/releases/Jan05/tsunamiVid320.html
http://www.news.cornell.edu/releases/Jan05/tsunamiVid640.html

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>