Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find climate change is major factor in drought’s growing reach

12.01.2005


The percentage of Earth’s land area stricken by serious drought more than doubled from the 1970s to the early 2000s, according to a new analysis by scientists at the National Center for Atmospheric Research (NCAR) in Boulder, Colo. Widespread drying occurred over much of Europe and Asia, Canada, western and southern Africa, and eastern Australia. Rising global temperatures appear to be a major factor, says NCAR scientist Aiguo Dai.



Dai will present the new findings on Weds., Jan. 12th at the American Meteorological Society (AMS) annual meeting in San Diego, Calif. The work also appeared in a paper published in the December issue of the Journal of Hydrometeorology; co-authors are NCAR’s Kevin Trenberth and Taotao Qian.

The study was supported by the National Science Foundation (NSF), NCAR’s primary sponsor. "The results reconfirm the complexity of the climate system," says Cliff Jacobs, program director in NSF’s division of atmospheric sciences. "We need to continue to develop a wide variety of research tools to understand these changes."


Dai and colleagues found that the fraction of global land experiencing very dry conditions rose from about 10-15 percent in the early 1970s to about 30 percent by 2002. Almost half of that change is due to rising temperatures rather than decreases in rainfall or snowfall, according to Dai. "These results point to increased risk of droughts as human activity contributes to global warming," says Dai.

Even as drought has expanded across Earth’s land areas, the amount of water vapor in the air has increased over the past few decades. Average global precipitation has also risen slightly. However, as Dai notes, "surface air temperatures over global land areas have increased sharply since the 1970s." The large warming increases the tendency for moisture to evaporate from land areas. Together, the overall area experiencing either very dry or very wet conditions could occupy a greater fraction of Earth’s land areas in a warmer world, Dai says. "Droughts and floods are extreme climate events that are likely to change more rapidly than the average climate," says Dai. "Because they are among the world’s costliest natural disasters and affect a very large number of people each year, it is important to monitor them and perhaps predict their variability."

To see how soil moisture has evolved over the last few decades, Dai and colleagues produced a unique global-scale analysis using the Palmer Drought Severity Index, which for decades has been the most widely used yardstick of U.S. drought. The index is a measure of near-surface moisture conditions and is correlated with soil moisture content.

Since the Palmer index is not routinely calculated in most of the world, Dai and colleagues used long-term records of temperature and precipitation from a variety of sources to derive the index for the period 1870–2002. The results were consistent with those from a historical simulation of global land surface conditions, produced by a comprehensive computer model developed by scientists at NCAR, NASA, Georgia University of Technology, the University of Texas at Austin, and the University of Arizona.

By factoring out rainfall and snowfall, Dai and colleagues estimated how much of the global trend in soil moisture was due solely to rising temperatures through the extra evaporation they produce. "The warming-induced drying has occurred over most land areas since the 1970s," says Dai, "with the largest effects in northern mid- and high latitudes." In contrast, rainfall deficits alone were the main factor behind expansion of dry soils in Africa’s Sahel and East Asia. These are regions where El Niño, a more frequent visitor since the 1970s, tends to inhibit precipitation.

Though most of the Northern Hemisphere has shown a drying trend in recent decades, the United States has bucked that trend, becoming wetter overall during the past 50 years, says Dai. The trend is especially notable between the Rocky Mountains and Mississippi River. Other parts of the world showing a moistening trend include Argentina and parts of western Australia. These trends are related more to increased precipitation than to temperature, says Dai. "Global climate models predict increased drying over most land areas during their warm season, as carbon dioxide and other greenhouse gases increase," says Dai. "Our analyses suggest that this drying may have already begun."

At the AMS conference, Trenberth will also present results on Tues., Jan. 11th from a workshop on drought. Among the questions addressed: What is the full range of past drought variability, as revealed by paleoclimate data? What role might droughts associated with abrupt climate change play? Are droughts likely to become more frequent, longer, or more extensive as we move into a future with global warming?

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>