Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists find climate change is major factor in drought’s growing reach


The percentage of Earth’s land area stricken by serious drought more than doubled from the 1970s to the early 2000s, according to a new analysis by scientists at the National Center for Atmospheric Research (NCAR) in Boulder, Colo. Widespread drying occurred over much of Europe and Asia, Canada, western and southern Africa, and eastern Australia. Rising global temperatures appear to be a major factor, says NCAR scientist Aiguo Dai.

Dai will present the new findings on Weds., Jan. 12th at the American Meteorological Society (AMS) annual meeting in San Diego, Calif. The work also appeared in a paper published in the December issue of the Journal of Hydrometeorology; co-authors are NCAR’s Kevin Trenberth and Taotao Qian.

The study was supported by the National Science Foundation (NSF), NCAR’s primary sponsor. "The results reconfirm the complexity of the climate system," says Cliff Jacobs, program director in NSF’s division of atmospheric sciences. "We need to continue to develop a wide variety of research tools to understand these changes."

Dai and colleagues found that the fraction of global land experiencing very dry conditions rose from about 10-15 percent in the early 1970s to about 30 percent by 2002. Almost half of that change is due to rising temperatures rather than decreases in rainfall or snowfall, according to Dai. "These results point to increased risk of droughts as human activity contributes to global warming," says Dai.

Even as drought has expanded across Earth’s land areas, the amount of water vapor in the air has increased over the past few decades. Average global precipitation has also risen slightly. However, as Dai notes, "surface air temperatures over global land areas have increased sharply since the 1970s." The large warming increases the tendency for moisture to evaporate from land areas. Together, the overall area experiencing either very dry or very wet conditions could occupy a greater fraction of Earth’s land areas in a warmer world, Dai says. "Droughts and floods are extreme climate events that are likely to change more rapidly than the average climate," says Dai. "Because they are among the world’s costliest natural disasters and affect a very large number of people each year, it is important to monitor them and perhaps predict their variability."

To see how soil moisture has evolved over the last few decades, Dai and colleagues produced a unique global-scale analysis using the Palmer Drought Severity Index, which for decades has been the most widely used yardstick of U.S. drought. The index is a measure of near-surface moisture conditions and is correlated with soil moisture content.

Since the Palmer index is not routinely calculated in most of the world, Dai and colleagues used long-term records of temperature and precipitation from a variety of sources to derive the index for the period 1870–2002. The results were consistent with those from a historical simulation of global land surface conditions, produced by a comprehensive computer model developed by scientists at NCAR, NASA, Georgia University of Technology, the University of Texas at Austin, and the University of Arizona.

By factoring out rainfall and snowfall, Dai and colleagues estimated how much of the global trend in soil moisture was due solely to rising temperatures through the extra evaporation they produce. "The warming-induced drying has occurred over most land areas since the 1970s," says Dai, "with the largest effects in northern mid- and high latitudes." In contrast, rainfall deficits alone were the main factor behind expansion of dry soils in Africa’s Sahel and East Asia. These are regions where El Niño, a more frequent visitor since the 1970s, tends to inhibit precipitation.

Though most of the Northern Hemisphere has shown a drying trend in recent decades, the United States has bucked that trend, becoming wetter overall during the past 50 years, says Dai. The trend is especially notable between the Rocky Mountains and Mississippi River. Other parts of the world showing a moistening trend include Argentina and parts of western Australia. These trends are related more to increased precipitation than to temperature, says Dai. "Global climate models predict increased drying over most land areas during their warm season, as carbon dioxide and other greenhouse gases increase," says Dai. "Our analyses suggest that this drying may have already begun."

At the AMS conference, Trenberth will also present results on Tues., Jan. 11th from a workshop on drought. Among the questions addressed: What is the full range of past drought variability, as revealed by paleoclimate data? What role might droughts associated with abrupt climate change play? Are droughts likely to become more frequent, longer, or more extensive as we move into a future with global warming?

Cheryl Dybas | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>