Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hurricane intensity predictions take into account effect of large eddies on wind speed

10.01.2005


The combined Geophysical Fluid Dynamics Laboratory/University of Rhode Island coupled hurricane-ocean model has helped to improve intensity predictions during tropical storms. However, scientists have found that the model consistently under-predicts maximum wind speed in very strong hurricanes.



In the current issue of the Journal of the Atmospheric Sciences, University of Rhode Island physical oceanographer Dr. Isaac Ginis describes how he and a team of scientists are refining the model by incorporating the factors that favor the formation of large eddies near the sea surface and their effect on wind speed and air humidity. Other members of the team include Alexander P. Khain and Elena Morozovsky of the Institute of Earth Sciences, Hebrew University of Jerusalem, Israel.

The authors speculate that large eddies, or circular currents of air, are a pervasive feature in tropical cyclones and suggests that they can contribute significantly to the transfer of energy, heat, and moisture from the ocean to the atmosphere.


"Lack of adequate consideration of the large eddy effects near the surface of the ocean may be one of the reasons for the limited tropical cyclone intensity forecast skill by hurricane prediction models," said Ginis. "The recently implemented to operational Geophysical Fluid Dynamics Laboratory (GFDL)/ University of Rhode Island (URI) coupled hurricane-ocean model helped to improve the intensity predictions measured by the central pressure. However, it has not always translated into improvements in predicting maximum wind speed. This is mainly due to underestimations of the surface winds in strong tropical cyclones."

In strong wind conditions the GFDL/URI model tends to underpredict surface wind speeds for a given central pressure. It is most likely the result of inadequate representation of the physical processes connected with the storm, in particular the contribution of large eddies in the modeling of the area near the sea surface and how the atmosphere and ocean interact.

The main objective in the study was to investigate the mechanisms leading to the formation of large eddies under tropical cyclone conditions and assess their effects on the factors that determine a storm’s intensity using a high-resolution, atmospheric computer model.

Ginis, Khain, and Morozovsky presented a new method to describe large eddies in both general circulation and regional weather prediction models, including hurricane models. Their approach is called "superparameterization," which consists of an eddy-resolving, two-dimensional system embedded into a weather prediction model, allowing explicit simulations of large eddies.

Based on the results of their numerical simulations, the scientists found that when the wind speed is high enough, a strong vertical wind shear that develops near the sea surface triggers conditions that allow for genesis of large eddies. They concluded that a strong background wind, typical for hurricanes, and evaporation from the ocean are the necessary conditions for the formation of large eddies in the lower part of the atmosphere.

The experiments demonstrated that as soon as large eddies arise, they affect the transport of heat, moisture, and momentum, modifying the structure of the atmosphere and the way it interacts with the ocean. The most significant manifestation of these effects is a significant increase of the near-surface wind speed, and evaporation from the sea surface, which can double in strong winds.

"These results demonstrate the important role that large eddies play in high wind speed conditions," said Ginis. "Inclusion of these effects in the tropical cyclone models may potentially lead to substantial improvements in the prediction of storm intensity."

Ginis’s work on this project was partially supported by the National Science Foundation. Khain and Morozovsky were supported by the Lady Davis Foundation and the U.S.-Israel Binational Science Foundation.

Lisa Cugini | EurekAlert!
Further information:
http://www.gso.uri.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Molecular volume control

22.08.2017 | Life Sciences

When fish swim in the holodeck

22.08.2017 | Life Sciences

Biochemical 'fingerprints' reveal diabetes progression

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>