Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seismic research without artificial source

22.12.2004


Researchers at TU Delft have made progress in the theoretical foundation of a special subsoil imaging technique. This technique could be used to chart underground mineral resources, it is called “acoustic daylight imaging”. The method uses natural acoustic signals, already present in the earth, to create an image of the subsurface layers. This week, Professor Kees Wapenaar will publish an article in the renowned scientific magazine “Physical Review Letters”.



Usually, the composition of the subsurface is researched using generated acoustic signals that are sent into he ground. The sonic reflections are then analysed (the basic principle of seismics). This is no longer necessary with acoustic daylight imaging. Theoretically, taking surface measurements and subjecting the results to a series of mathematical calculations would be enough to create an image of the subsurface.

The theoretical possibility of seismic imaging using only naturally occurring sources of sound has previously been shown. This phenomenon is, however, no longer of purely theoretical importance. A current example of the possible application and development of acoustic daylight imaging is the Lofar-project in Exloo (in the Dutch province of Drente). This large scale scientific project not only encompasses the construction of the world’s largest radio-telescope, but also the realisation of the largest sensor network in Europe. This network would provide a development platform for, for example, geophysical applications.


In October of 2004, geophysicists from TU Delft, TNO and the KNMI therefore started placing geophones (a sort of microphones used to measure underground sound waves) in the testing field in Exloo. During ten years they will use these geophones to ‘listen’ to naturally occurring underground sounds. The expectation is that this will provide more understanding about the structure of the subsurface as well as providing a more accurate scientific model of how the subsurface is moving. The latter is of importance in the mining of resources such as gas, oil and coal.

Maarten van der Sanden | alfa
Further information:
http://www.tudelft.nl

More articles from Earth Sciences:

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>