Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Seismic research without artificial source


Researchers at TU Delft have made progress in the theoretical foundation of a special subsoil imaging technique. This technique could be used to chart underground mineral resources, it is called “acoustic daylight imaging”. The method uses natural acoustic signals, already present in the earth, to create an image of the subsurface layers. This week, Professor Kees Wapenaar will publish an article in the renowned scientific magazine “Physical Review Letters”.

Usually, the composition of the subsurface is researched using generated acoustic signals that are sent into he ground. The sonic reflections are then analysed (the basic principle of seismics). This is no longer necessary with acoustic daylight imaging. Theoretically, taking surface measurements and subjecting the results to a series of mathematical calculations would be enough to create an image of the subsurface.

The theoretical possibility of seismic imaging using only naturally occurring sources of sound has previously been shown. This phenomenon is, however, no longer of purely theoretical importance. A current example of the possible application and development of acoustic daylight imaging is the Lofar-project in Exloo (in the Dutch province of Drente). This large scale scientific project not only encompasses the construction of the world’s largest radio-telescope, but also the realisation of the largest sensor network in Europe. This network would provide a development platform for, for example, geophysical applications.

In October of 2004, geophysicists from TU Delft, TNO and the KNMI therefore started placing geophones (a sort of microphones used to measure underground sound waves) in the testing field in Exloo. During ten years they will use these geophones to ‘listen’ to naturally occurring underground sounds. The expectation is that this will provide more understanding about the structure of the subsurface as well as providing a more accurate scientific model of how the subsurface is moving. The latter is of importance in the mining of resources such as gas, oil and coal.

Maarten van der Sanden | alfa
Further information:

More articles from Earth Sciences:

nachricht Oasis of life in the ice-covered central Arctic
24.10.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>