Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Historic Himalayan ice dams created huge lakes, mammoth floods

14.12.2004


Ice dams across the deepest gorge on Earth created some of the highest-elevation lakes in history. New research shows the most recent of these lakes, in the Himalaya Mountains of Tibet, broke through its ice barrier somewhere between 600 and 900 AD, causing massive torrents of water to pour through the Himalayas into India.



Geological evidence points to the existence of at least three lakes, and probably four, at various times in history when glacial ice from the Himalayas blocked the flow of the Tsangpo River in Tibet, said University of Washington geologist David Montgomery, a professor of Earth and space sciences.

Carbon dating shows the most recent lake, about 780 feet deep, burst through the ice dam between 1,100 and 1,400 years ago, rapidly draining some 50 cubic miles of water. The second lake, more than 2,200 feet deep, dates from about 10,000 years ago, and likely held more than 500 cubic miles of water. When that ice dam broke, it caused one of the greatest floods on Earth since the last ice age. The Tsangpo is the world’s highest river, with an average elevation of 13,000 feet, about 500 feet higher than South America’s Lake Titicaca, the highest lake. The Tsangpo flows to the eastern edge of Tibet before it turns south and plunges through a deep gorge into India, where it eventually becomes the Brahmaputra River and flows into the Bay of Bengal.


The new evidence indicates that several times in the Tsangpo’s history, moisture from strengthening monsoons built Himalayan glaciers into huge ice dams, stopping the river before it could leave Tibet. A group of researchers led by Montgomery found evidence of the resulting lakes in ledges carved into the sides of the Tsangpo gorge.

"It is possible that there would have been water close to the crest of the Himalayas," Montgomery said. "Not the high peaks but the passes, and they were probably blocked by ice too. It probably was like an ice-dammed ocean up there."

The group will present evidence of repeated damming and flooding of the Tsangpo gorge on Wednesday at the American Geophysical Union fall meeting in San Francisco. Co-presenters are Bernard Hallet, Alan Gillespie, Noah Finnegan, Matthew Kuharic, Amanda Henck, Alison Anders and Harvey Greenberg, all of the UW Department of Earth and Space Sciences; and Liu Yuping of the Chengdu Institute of Geology and Mineral Resources in Chengdu, China.

The smaller lake appears to have coincided with China’s Tang Dynasty and appears to have been the border between China and Tibet, Montgomery said. When the lake suddenly drained, it opened a large amount of rich farmland on the valley floor, farmland that today serves as the Tibetan breadbasket.

The Tsangpo River Gorge is considered some of the most spectacular terrain on Earth, as the river drops 7,800 feet (about 1.3 miles) in elevation over the course of about 125 miles. Parts of the gorge still have not been mapped because they are so rugged, possible evidence of the repeated sudden barrages of vast amounts of water unleashed by broken ice dams.

"You can carve a lot of beautiful deep valleys that way," Montgomery said. "To a geologist, that opens the question of, ’What is the role of these big floods? Are they responsible for carving that beautiful topography or are they merely second-bit players?’"

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>