Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Historic Himalayan ice dams created huge lakes, mammoth floods

14.12.2004


Ice dams across the deepest gorge on Earth created some of the highest-elevation lakes in history. New research shows the most recent of these lakes, in the Himalaya Mountains of Tibet, broke through its ice barrier somewhere between 600 and 900 AD, causing massive torrents of water to pour through the Himalayas into India.



Geological evidence points to the existence of at least three lakes, and probably four, at various times in history when glacial ice from the Himalayas blocked the flow of the Tsangpo River in Tibet, said University of Washington geologist David Montgomery, a professor of Earth and space sciences.

Carbon dating shows the most recent lake, about 780 feet deep, burst through the ice dam between 1,100 and 1,400 years ago, rapidly draining some 50 cubic miles of water. The second lake, more than 2,200 feet deep, dates from about 10,000 years ago, and likely held more than 500 cubic miles of water. When that ice dam broke, it caused one of the greatest floods on Earth since the last ice age. The Tsangpo is the world’s highest river, with an average elevation of 13,000 feet, about 500 feet higher than South America’s Lake Titicaca, the highest lake. The Tsangpo flows to the eastern edge of Tibet before it turns south and plunges through a deep gorge into India, where it eventually becomes the Brahmaputra River and flows into the Bay of Bengal.


The new evidence indicates that several times in the Tsangpo’s history, moisture from strengthening monsoons built Himalayan glaciers into huge ice dams, stopping the river before it could leave Tibet. A group of researchers led by Montgomery found evidence of the resulting lakes in ledges carved into the sides of the Tsangpo gorge.

"It is possible that there would have been water close to the crest of the Himalayas," Montgomery said. "Not the high peaks but the passes, and they were probably blocked by ice too. It probably was like an ice-dammed ocean up there."

The group will present evidence of repeated damming and flooding of the Tsangpo gorge on Wednesday at the American Geophysical Union fall meeting in San Francisco. Co-presenters are Bernard Hallet, Alan Gillespie, Noah Finnegan, Matthew Kuharic, Amanda Henck, Alison Anders and Harvey Greenberg, all of the UW Department of Earth and Space Sciences; and Liu Yuping of the Chengdu Institute of Geology and Mineral Resources in Chengdu, China.

The smaller lake appears to have coincided with China’s Tang Dynasty and appears to have been the border between China and Tibet, Montgomery said. When the lake suddenly drained, it opened a large amount of rich farmland on the valley floor, farmland that today serves as the Tibetan breadbasket.

The Tsangpo River Gorge is considered some of the most spectacular terrain on Earth, as the river drops 7,800 feet (about 1.3 miles) in elevation over the course of about 125 miles. Parts of the gorge still have not been mapped because they are so rugged, possible evidence of the repeated sudden barrages of vast amounts of water unleashed by broken ice dams.

"You can carve a lot of beautiful deep valleys that way," Montgomery said. "To a geologist, that opens the question of, ’What is the role of these big floods? Are they responsible for carving that beautiful topography or are they merely second-bit players?’"

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>