Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Permafrost warming a challenge to Tibetian train route

13.12.2004


Engineers constructing a new railroad across the vast, high-altitude Tibetan Plateau are using a surprisingly simple idea to fortify shifting frozen soils affected by climate warming, according to a University of Colorado at Boulder permafrost expert.



"The Qinghai-Xizang railroad is the most ambitious construction project in a permafrost region since the Trans-Alaska Pipeline," said CU-Boulder and National Snow and Ice Data Center researcher Tingjun Zhang. Zhang is working closely on the project with scientists at the Cold and Arid Regions Environmental and Engineering Research Institute in Lanzhou, China. "This is the first time engineers are primarily using crushed rock to insulate and fortify a structure against permafrost," he said.

Zhang will discuss the railroad project and the effects of widespread warming and thawing of frozen soils across the northern hemisphere at a press briefing in San Francisco Dec. 13 as part of the American Geophysical Union’s annual meeting. He will lead a panel of permafrost and climate experts from universities in the United States, Canada and the United Kingdom. "If current observations are indicative of long-term trends, we can anticipate major changes in permafrost conditions during the next century," Zhang said. "Permafrost is thawing in many regions, and it is significantly influencing landscapes and ecosystems."


One example is the Tibetan plateau, where the 695-mile Qinghai-Xizang railroad is due to be completed in 2007. More than 600 miles of track will be at altitudes of at least 13,000 feet above sea level, and 340 miles of track will lie across permafrost. Half of the permafrost area the tracks will cross is categorized as "high- temperature permafrost," Zhang said, meaning that the frozen soil is only 1 or 2 degrees Celsius below freezing. "The permafrost presents a challenge, because the climate of the area is predicted to become warmer during the next 50 to 100 years, and construction and train activity on the surface can also create heat and cause melting," Zhang said. "The shifting soils can ruin railroad tracks, roads and buildings. "In order to keep the track straight and the railroad foundation stable, engineers are using crushed rock to both insulate and cool the permafrost," he said.

Using on-site experiments and mathematical heat transfer modeling, engineers determined that a 2- to 3-foot layer of loose, medium sized rocks minimizes heat intake to the soil under railroad embankments during warmer months and promotes heat loss in winter. "The rock layer is so effective that it actually helps create a net cooling effect over time," Zhang said. One experiment detailed in Zhang’s presentation for the AGU meeting showed the permafrost under a railroad embankment was actually colder after a year of crushed rock insulation.

Though crushed rock permafrost insulation was first investigated as early as the 1960s, this is the first time a large-scale project is using the technique as one of its primary solutions, according to Zhang. The railroad also is using other means to cool and protect the soil, including shading, insulation and "passive heat pumps" comprised of piping that conducts heat from the ground and circulates cold air.

"Crushed rock is the most cost-effective method," Zhang said. "It’s mainly labor costs." Zhang is a researcher at the National Snow and Ice Data Center and the Cooperative Institute for Research in Environmental Sciences, both of which are affiliated with CU-Boulder. He earned bachelor’s and master’s degrees in physical geography from Lanzhou University in China. He holds master’s and doctoral degrees in geophysics from the University of Alaska, Fairbanks.

Zhang is currently the principal investigator on five frozen-ground research projects around the world, with funding from the National Science Foundation, NASA, the International Arctic Research Center at the University of Alaska-Fairbanks and the National Institute for Global Environmental Change at the U.S. Department of Energy.

Tingjun Zhang | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Earth Sciences:

nachricht Research sheds new light on forces that threaten sensitive coastlines
24.04.2017 | Indiana University

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>