Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Probe Marine Mysteries off the Alaskan Coast

24.11.2004


Research cruise provides new information on tsunami during survey of remote area



A summer voyage to investigate the causes of one of the most devastating tsunamis in United States history has uncovered new mysteries about biological and geological processes off Alaska. Probing the depths below one of the world’s most important fisheries, scientists with Scripps Institution of Oceanography at the University of California, San Diego, as well as Indiana State University and their colleagues, conducted the first exploration of deep seafloor biological communities in a sector of the Alaskan margin off the Aleutian Islands along the northern part of the Pacific Rim.

In addition to identifying previously undiscovered deep-sea habitats, the researchers have stirred debate about the causes and characteristics of a devastating 1946 tsunami. The Pacific Ocean-wide event led to more than 150 deaths and widespread destruction as it pounded shorelines from Alaska to Antarctica. The July research cruise, aboard the Scripps research vessel Roger Revelle, was sponsored by the National Oceanic and Atmospheric Administration’s West Coast National Undersea Research Program.


To achieve a complete picture of how the 1946 event impacted seafloor habitats, the researchers extensively mapped the area, collected sediment samples and probed the region with Woods Hole Oceanographic Institution’s Jason II remotely operated vehicle (ROV). They charted new canyons and features of this previously unexplored, remote region of the world. Using multibeam mapping technology, the scientists produced previously unavailable details of the area, a snapshot that gave them new insight into the region’s history. In one scenario, scientists had predicted that an enormous undersea landslide in the area unleashed the giant tsunami. The new images, however, counter this explanation by showing no evidence of such a large landslide. "We found seafloor evidence that will cause tsunami modelers to rethink the cause and characteristics of the 1946 tsunami," said Tony Rathburn, a research associate scientist at Scripps and a faculty member at Indiana State University. "Our findings make the causes of the 1946 tsunami even more mysterious."

An earthquake may now emerge as the leading cause of the 1946 event, but the scientists say much more investigation is needed to pinpoint the cause due to the new findings. The ROV and sonar explorations revealed a complex set of environments on the Alaskan margin, including deep canyons, steep scarps (walls), sandy slopes and an unusual seamount. While exploring the area, the scientists also discovered previously unknown cold methane seeps and biological communities that exist in such environments. The seeps, found 3,300 meters below the water’s surface, were unlike others that have been studied on the Pacific margin.

Though the researchers focused on worms, crustaceans and single-celled creatures, they also found clams and other animals that obtain their nutrition from the chemical discharges of the seeps, a process known as chemosynthesis. These creatures contain bacteria that provide nutrition for the "host" animal, while the host provides a home and chemicals from the seep for the bacteria.

"At several thousand meters deep, we would notice sparse evidence of animal life, but then all of a sudden we would find, right next to a seep, rocks just completely covered with organisms," said Lisa Levin, a professor at Scripps. "There was 100 percent cover of animal life on these rocks. On one of them that I call ’weeping rock,’ the organisms were growing down instead of up, possibly to reach down to the chemical source."
The scientists also identified many new, previously unidentified deep-sea coral habitats, some possibly associated with the methane seeps.

The expedition included an interdisciplinary team of Scripps researchers, including geologists, geochemists, biogeochemists, biologists and paleoceanographers.

Mario Aguilera | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Earth Sciences:

nachricht Clear as mud: Desiccation cracks help reveal the shape of water on Mars
20.04.2018 | Geological Society of America

nachricht Hurricane Harvey: Dutch-Texan research shows most fatalities occurred outside flood zones
19.04.2018 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>