Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Probe Marine Mysteries off the Alaskan Coast

24.11.2004


Research cruise provides new information on tsunami during survey of remote area



A summer voyage to investigate the causes of one of the most devastating tsunamis in United States history has uncovered new mysteries about biological and geological processes off Alaska. Probing the depths below one of the world’s most important fisheries, scientists with Scripps Institution of Oceanography at the University of California, San Diego, as well as Indiana State University and their colleagues, conducted the first exploration of deep seafloor biological communities in a sector of the Alaskan margin off the Aleutian Islands along the northern part of the Pacific Rim.

In addition to identifying previously undiscovered deep-sea habitats, the researchers have stirred debate about the causes and characteristics of a devastating 1946 tsunami. The Pacific Ocean-wide event led to more than 150 deaths and widespread destruction as it pounded shorelines from Alaska to Antarctica. The July research cruise, aboard the Scripps research vessel Roger Revelle, was sponsored by the National Oceanic and Atmospheric Administration’s West Coast National Undersea Research Program.


To achieve a complete picture of how the 1946 event impacted seafloor habitats, the researchers extensively mapped the area, collected sediment samples and probed the region with Woods Hole Oceanographic Institution’s Jason II remotely operated vehicle (ROV). They charted new canyons and features of this previously unexplored, remote region of the world. Using multibeam mapping technology, the scientists produced previously unavailable details of the area, a snapshot that gave them new insight into the region’s history. In one scenario, scientists had predicted that an enormous undersea landslide in the area unleashed the giant tsunami. The new images, however, counter this explanation by showing no evidence of such a large landslide. "We found seafloor evidence that will cause tsunami modelers to rethink the cause and characteristics of the 1946 tsunami," said Tony Rathburn, a research associate scientist at Scripps and a faculty member at Indiana State University. "Our findings make the causes of the 1946 tsunami even more mysterious."

An earthquake may now emerge as the leading cause of the 1946 event, but the scientists say much more investigation is needed to pinpoint the cause due to the new findings. The ROV and sonar explorations revealed a complex set of environments on the Alaskan margin, including deep canyons, steep scarps (walls), sandy slopes and an unusual seamount. While exploring the area, the scientists also discovered previously unknown cold methane seeps and biological communities that exist in such environments. The seeps, found 3,300 meters below the water’s surface, were unlike others that have been studied on the Pacific margin.

Though the researchers focused on worms, crustaceans and single-celled creatures, they also found clams and other animals that obtain their nutrition from the chemical discharges of the seeps, a process known as chemosynthesis. These creatures contain bacteria that provide nutrition for the "host" animal, while the host provides a home and chemicals from the seep for the bacteria.

"At several thousand meters deep, we would notice sparse evidence of animal life, but then all of a sudden we would find, right next to a seep, rocks just completely covered with organisms," said Lisa Levin, a professor at Scripps. "There was 100 percent cover of animal life on these rocks. On one of them that I call ’weeping rock,’ the organisms were growing down instead of up, possibly to reach down to the chemical source."
The scientists also identified many new, previously unidentified deep-sea coral habitats, some possibly associated with the methane seeps.

The expedition included an interdisciplinary team of Scripps researchers, including geologists, geochemists, biogeochemists, biologists and paleoceanographers.

Mario Aguilera | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>