Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Not the end, but beginning of the world as we know it

11.11.2004


Widespread volcanic activity, cyanobacteria and global glaciation may sound like the plot of a new, blockbuster disaster movie, but in reality, they are all events in the mystery surrounding the development of our oxygen-rich atmosphere, according to a Penn State geoscientist.



The most extreme fluctuation in the Earth’s carbon cycle occurred about 2.2 billion years ago, according to Dr. Lee R. Kump, professor of geosciences and member of the Penn State Astrobiology Research Center, and the conventional explanation is that it marks the debut of our oxygen atmosphere. Recently, however, better geological dating and a better proxy measure of when oxygen occurred in the atmosphere suggest that the oxygen atmosphere appeared long before this supposedly seminal event. "The new dating and proxy clearly show that the rise of oxygen preceded its apparent cause by at least 100 million years," Kump told attendees at the Geological Society of America conference Nov. 8 in Denver.

The proxy measure of when significant oxygen appeared in the atmosphere is sulfur. In an oxygen atmosphere, which is very oxidizing, all sulfur eventually becomes sulfate, but in a reducing atmosphere – one without significant oxygen – sulfur deposits as sulfate, sulfite or even pure sulfur and retains an unusual isotopic signature of upper atmospheric processes. Better dating of these strange isotopes in rocks found them to be 2.3 billion years old or older and does suggest that oxygen appeared earlier than the carbon cycle perturbation.


If the large carbon marine sequestration episode does not coincide with the increase of oxygen, what does? Cyanobacteria -- marine organisms that are photosynthetic – produced oxygen during these early pre-oxygen atmosphere years. However, because the atmosphere was heavily reducing, the oxygen was quickly removed from the atmosphere.

The shift from a reducing atmosphere to an oxidizing one occurred when volcanic activity gradually switched from volcanoes that outgas hydrogen and carbon monoxide to those that produce water vapor and carbon dioxide, according to Kump. These mantle plume volcanoes bring molten rock up from deep within the earth.

With larger amounts of water and carbon dioxide in the atmosphere, hydrogen and carbon monoxide were no longer using up all the oxygen produced by the Cyanobacteria and the amounts of oxygen increased. In a few million years, the oxygen levels reach those of Earth’s atmosphere today. "The increases and mantle plume changes came in pulses, not all at once," says Kump. "There was a step wise increase first at 2.7 billion years ago and then at 2.4 billion years ago."

As the oxygen built up, iron rich layers called red beds, because the iron is oxidized to rust, were deposited around the world. Redbeds are considered a sign of atmospheric oxygen. But also, as the oxygen increased, the levels of methane decreased. "You can have a methane-rich atmosphere with a little oxygen or an oxygen-rich atmosphere with a little methane, but both cannot be high," says Kump. "Methane was the most important greenhouse gas left in the atmosphere."

Without greenhouse gases and in the presence of a faint young Sun that produced less heat than the Sun does today, the Earth cooled, according to a theory published earlier by Penn State colleagues James Kasting and Alexander Pavlov. Glaciation on a global scale followed. However, the volcanoes continued to produce carbon dioxide – a greenhouse gas – until the atmosphere warmed enough to melt the glaciers.

"We have found really oxidized basalt, which is anomalous, in Northern Russia near Scandinavia. This basalt would be a very poor sponge for soaking oxygen out of the atmosphere," says Kump. "We need to look for more evidence of these oxygen producing mantle rocks."

Andrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Earth Sciences:

nachricht A promising target in the quest for a 1-million-year-old Antarctic ice core
24.05.2018 | University of Washington

nachricht Tropical Peat Swamps: Restoration of Endangered Carbon Reservoirs
24.05.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>