Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Not the end, but beginning of the world as we know it


Widespread volcanic activity, cyanobacteria and global glaciation may sound like the plot of a new, blockbuster disaster movie, but in reality, they are all events in the mystery surrounding the development of our oxygen-rich atmosphere, according to a Penn State geoscientist.

The most extreme fluctuation in the Earth’s carbon cycle occurred about 2.2 billion years ago, according to Dr. Lee R. Kump, professor of geosciences and member of the Penn State Astrobiology Research Center, and the conventional explanation is that it marks the debut of our oxygen atmosphere. Recently, however, better geological dating and a better proxy measure of when oxygen occurred in the atmosphere suggest that the oxygen atmosphere appeared long before this supposedly seminal event. "The new dating and proxy clearly show that the rise of oxygen preceded its apparent cause by at least 100 million years," Kump told attendees at the Geological Society of America conference Nov. 8 in Denver.

The proxy measure of when significant oxygen appeared in the atmosphere is sulfur. In an oxygen atmosphere, which is very oxidizing, all sulfur eventually becomes sulfate, but in a reducing atmosphere – one without significant oxygen – sulfur deposits as sulfate, sulfite or even pure sulfur and retains an unusual isotopic signature of upper atmospheric processes. Better dating of these strange isotopes in rocks found them to be 2.3 billion years old or older and does suggest that oxygen appeared earlier than the carbon cycle perturbation.

If the large carbon marine sequestration episode does not coincide with the increase of oxygen, what does? Cyanobacteria -- marine organisms that are photosynthetic – produced oxygen during these early pre-oxygen atmosphere years. However, because the atmosphere was heavily reducing, the oxygen was quickly removed from the atmosphere.

The shift from a reducing atmosphere to an oxidizing one occurred when volcanic activity gradually switched from volcanoes that outgas hydrogen and carbon monoxide to those that produce water vapor and carbon dioxide, according to Kump. These mantle plume volcanoes bring molten rock up from deep within the earth.

With larger amounts of water and carbon dioxide in the atmosphere, hydrogen and carbon monoxide were no longer using up all the oxygen produced by the Cyanobacteria and the amounts of oxygen increased. In a few million years, the oxygen levels reach those of Earth’s atmosphere today. "The increases and mantle plume changes came in pulses, not all at once," says Kump. "There was a step wise increase first at 2.7 billion years ago and then at 2.4 billion years ago."

As the oxygen built up, iron rich layers called red beds, because the iron is oxidized to rust, were deposited around the world. Redbeds are considered a sign of atmospheric oxygen. But also, as the oxygen increased, the levels of methane decreased. "You can have a methane-rich atmosphere with a little oxygen or an oxygen-rich atmosphere with a little methane, but both cannot be high," says Kump. "Methane was the most important greenhouse gas left in the atmosphere."

Without greenhouse gases and in the presence of a faint young Sun that produced less heat than the Sun does today, the Earth cooled, according to a theory published earlier by Penn State colleagues James Kasting and Alexander Pavlov. Glaciation on a global scale followed. However, the volcanoes continued to produce carbon dioxide – a greenhouse gas – until the atmosphere warmed enough to melt the glaciers.

"We have found really oxidized basalt, which is anomalous, in Northern Russia near Scandinavia. This basalt would be a very poor sponge for soaking oxygen out of the atmosphere," says Kump. "We need to look for more evidence of these oxygen producing mantle rocks."

Andrea Elyse Messer | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Seeking balanced networks: how neurons adjust their proteins during homeostatic scaling.

24.10.2016 | Life Sciences

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

More VideoLinks >>>