Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser Technology Helps Track Changes In Mount St. Helens

26.10.2004


Photograph taken on October 1, 2004 of renewed volcanic activity within the crater formed by the eruption of Mount St. Helens in 1980. Recent activity, concentrated on the south side of the volcanic dome formed in the 1980s, includes uplift of a new dome from beneath the crater glacier and formation of vents by glacier melting and explosive eruptions of steam and ash. Credit: USGS


Elevation differences in the crater were found between two airborne LIDAR surveys conducted in September, 2003 and October 4, 2003. The image is a computer-generated representation of the October 4 topography. The superimposed colors indicate areas of change: areas where elevation has lowered between 0.5 to 30 meters (blue); areas where elevation has increased between 1.5 to 40 m, 40 m to 80 m, and 80 m to 120 m are green, yellow, and orange, respectively. Credit: USGS and NASA


U.S. Geological Survey (USGS) and NASA scientists studying Mount St. Helens are using high-tech Light Detection and Ranging (LIDAR) technology to analyze changes in the surface elevation of the crater, which began deforming in late September 2004.

With data derived from airborne LIDAR, scientists can accurately map, often in exquisite detail, the dimensions of the uplift and create better models to forecast volcanic hazards. LIDAR shows, in the two weeks before Oct. 4, the new uplift grew to the height of a 35-story building (110 meters or 360 feet) and the area of 29 football fields (130,000 square meters).

"This is the first time USGS and NASA have teamed to use LIDAR to measure volcano deformation," said USGS scientist Ralph Haugerud. He noted LIDAR technology enables researchers to compare with greater accuracy than ever before the topography before and after volcanic events. "The resulting pictures of topographic change can reveal information found in no other kind of data set," added David Harding, a scientist at NASA’s Goddard Space Flight Center, Greenbelt, Md.



In 2003 the USGS contracted a LIDAR survey of Mount St. Helens. In early September 2004, USGS and NASA scientists began detailed planning for a second survey. The survey, contracted by NASA, would extend the area covered by the first survey. But when the mountain began rumbling on Sept. 23, USGS and NASA scientists accelerated plans and re- surveyed the mountain on Oct. 4. The topographic changes resulting from the unrest at Mount St. Helens are shown in detail in the Oct. 4, 2004, LIDAR survey.

Some of the Mount St. Helens features related to the volcanic unrest visualized in the new LIDAR-derived Digital Elevation Model (DEM) include growth of a new volcanic dome south of the 1980-1986 volcanic dome and new steam-and-ash vents. Additional changes between the two LIDAR surveys unrelated to the volcanic unrest include shrinking snow fields, several rock falls, movement of three rock glaciers, and growth of the crater glacier, which has been an ongoing subject of USGS research at Mount St. Helens.

Comparison and analysis of the DEMs from the two surveys by Haugerud and Harding show, as of Oct. 4, 2004, 5.3 million cubic meters (6.9 million cubic yards) of volume change occurred in the area of uplift. This analysis confirms photogrammetric measurements made over the same period by the USGS.

Linda Mark, a hydrologist with the USGS Cascades Volcano Observatory, said "Global Positioning System data provide us with very accurate point measurements of deformation, but only at locations where we can place an instrument. LIDAR, however, helps us quantify the ongoing deformation in the crater of Mount St. Helens with lesser accuracy but over a much broader area. Used together, the two methods complement each other, and the LIDAR-derived DEMs can be used for modeling efforts to help forecast volcanic hazards."

LIDAR mapping uses a scanning laser rangefinder mounted in a small aircraft to measure distances from the aircraft to the ground several tens of thousands of times each second. It commonly measures the ground position at points a meter apart with vertical accuracy as good as 10 centimeters (four inches).

NASA scientists and engineers in the 1980s and 1990s pioneered airborne LIDAR mapping, Harding said. "Because of its very high accuracy and fast turn-around of results, LIDAR is rapidly becoming the preferred method for detailed topographic mapping and is conducted worldwide on a commercial basis by numerous companies," he said.

Krishna Ramanujan | NASA
Further information:
http://www.nasa.gov/vision/earth/lookingatearth/mshelenslidar.html
http://www.nasa.gov

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>