Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser Technology Helps Track Changes In Mount St. Helens

26.10.2004


Photograph taken on October 1, 2004 of renewed volcanic activity within the crater formed by the eruption of Mount St. Helens in 1980. Recent activity, concentrated on the south side of the volcanic dome formed in the 1980s, includes uplift of a new dome from beneath the crater glacier and formation of vents by glacier melting and explosive eruptions of steam and ash. Credit: USGS


Elevation differences in the crater were found between two airborne LIDAR surveys conducted in September, 2003 and October 4, 2003. The image is a computer-generated representation of the October 4 topography. The superimposed colors indicate areas of change: areas where elevation has lowered between 0.5 to 30 meters (blue); areas where elevation has increased between 1.5 to 40 m, 40 m to 80 m, and 80 m to 120 m are green, yellow, and orange, respectively. Credit: USGS and NASA


U.S. Geological Survey (USGS) and NASA scientists studying Mount St. Helens are using high-tech Light Detection and Ranging (LIDAR) technology to analyze changes in the surface elevation of the crater, which began deforming in late September 2004.

With data derived from airborne LIDAR, scientists can accurately map, often in exquisite detail, the dimensions of the uplift and create better models to forecast volcanic hazards. LIDAR shows, in the two weeks before Oct. 4, the new uplift grew to the height of a 35-story building (110 meters or 360 feet) and the area of 29 football fields (130,000 square meters).

"This is the first time USGS and NASA have teamed to use LIDAR to measure volcano deformation," said USGS scientist Ralph Haugerud. He noted LIDAR technology enables researchers to compare with greater accuracy than ever before the topography before and after volcanic events. "The resulting pictures of topographic change can reveal information found in no other kind of data set," added David Harding, a scientist at NASA’s Goddard Space Flight Center, Greenbelt, Md.



In 2003 the USGS contracted a LIDAR survey of Mount St. Helens. In early September 2004, USGS and NASA scientists began detailed planning for a second survey. The survey, contracted by NASA, would extend the area covered by the first survey. But when the mountain began rumbling on Sept. 23, USGS and NASA scientists accelerated plans and re- surveyed the mountain on Oct. 4. The topographic changes resulting from the unrest at Mount St. Helens are shown in detail in the Oct. 4, 2004, LIDAR survey.

Some of the Mount St. Helens features related to the volcanic unrest visualized in the new LIDAR-derived Digital Elevation Model (DEM) include growth of a new volcanic dome south of the 1980-1986 volcanic dome and new steam-and-ash vents. Additional changes between the two LIDAR surveys unrelated to the volcanic unrest include shrinking snow fields, several rock falls, movement of three rock glaciers, and growth of the crater glacier, which has been an ongoing subject of USGS research at Mount St. Helens.

Comparison and analysis of the DEMs from the two surveys by Haugerud and Harding show, as of Oct. 4, 2004, 5.3 million cubic meters (6.9 million cubic yards) of volume change occurred in the area of uplift. This analysis confirms photogrammetric measurements made over the same period by the USGS.

Linda Mark, a hydrologist with the USGS Cascades Volcano Observatory, said "Global Positioning System data provide us with very accurate point measurements of deformation, but only at locations where we can place an instrument. LIDAR, however, helps us quantify the ongoing deformation in the crater of Mount St. Helens with lesser accuracy but over a much broader area. Used together, the two methods complement each other, and the LIDAR-derived DEMs can be used for modeling efforts to help forecast volcanic hazards."

LIDAR mapping uses a scanning laser rangefinder mounted in a small aircraft to measure distances from the aircraft to the ground several tens of thousands of times each second. It commonly measures the ground position at points a meter apart with vertical accuracy as good as 10 centimeters (four inches).

NASA scientists and engineers in the 1980s and 1990s pioneered airborne LIDAR mapping, Harding said. "Because of its very high accuracy and fast turn-around of results, LIDAR is rapidly becoming the preferred method for detailed topographic mapping and is conducted worldwide on a commercial basis by numerous companies," he said.

Krishna Ramanujan | NASA
Further information:
http://www.nasa.gov/vision/earth/lookingatearth/mshelenslidar.html
http://www.nasa.gov

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>