Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Meteorites Supplied Earth Life with Phosphorus

24.08.2004


Artist’s illustration of early Earth, 4.5 billion years ago, about a year after a Mars-sized object hit Earth and formed the Earth-Moon system. The still molten moon with an impact in progress (upper left) is viewed from Earth’s volcanic surface. Meteorites and comets -- like the comet visible in the sky -- delivered materials needed for life on Earth. Rings remaining from the collision and other debris, including moonlets not yet swept up by the moon, are visible. An Orion-like nebula appears at upper right. (Painting copyrighted by artist James V. Scotti, UA Lunar & Planetary Lab)


University of Arizona scientists have discovered that meteorites, particularly iron meteorites, may have been critical to the evolution of life on Earth.

Their research shows that meteorites easily could have provided more phosphorus than naturally occurs on Earth -- enough phosphorus to give rise to biomolecules which eventually assembled into living, replicating organisms.

Phosphorus is central to life. It forms the backbone of DNA and RNA because it connects these molecules’ genetic bases into long chains. It is vital to metabolism because it is linked with life’s fundamental fuel, adenosine triphosphate (ATP), the energy that powers growth and movement. And phosphorus is part of living architecture – it is in the phospholipids that make up cell walls and in the bones of vertebrates.



"In terms of mass, phosphorus is the fifth most important biologic element, after carbon, hydrogen, oxygen, and nitrogen," said Matthew A. Pasek, a doctoral candidate in UA’s planetary sciences department and Lunar and Planetary Laboratory.
But where terrestrial life got its phosphorus has been a mystery, he added. Phosphorus is much rarer in nature than are hydrogen, oxygen, carbon, and nitrogen.

Pasek cites recent studies that show there’s approximately one phosphorus atom for every 2.8 million hydrogen atoms in the cosmos, every 49 million hydrogen atoms in the oceans, and every 203 hydrogen atoms in bacteria. Similarly, there’s a single phosphorus atom for every 1,400 oxygen atoms in the cosmos, every 25 million oxygen atoms in the oceans, and 72 oxygen atoms in bacteria. The numbers for carbon atoms and nitrogen atoms, respectively, per single phosphorus atom are 680 and 230 in the cosmos, 974 and 633 in the oceans, and 116 and 15 in bacteria.

"Because phosphorus is much rarer in the environment than in life, understanding the behavior of phosphorus on the early Earth gives clues to life’s orgin," Pasek said.

The most common terrestrial form of the element is a mineral called apatite. When mixed with water, apatite releases only very small amounts of phosphate. Scientists have tried heating apatite to high temperatures, combining it with various strange, super-energetic compounds, even experimenting with phosphorous compounds unknown on Earth. This research hasn’t explained where life’s phosphorus comes from, Pasek noted.

Pasek began working with Dante Lauretta, UA assistant professor of planetary sciences, on the idea that meteorites are the source of living Earth’s phosphorus. The work was inspired by Lauretta’s earlier experiments that showed that phosphorus became concentrated at metal surfaces that corroded in the early solar system.

"This natural mechanism of phosphorus concentration in the presence of a known organic catalyst (such as iron-based metal) made me think that aqueous corrosion of meteoritic minerals could lead to the formation of important phosphorus-bearing biomolecules," Lauretta said.

"Meteorites have several different minerals that contain phosphorus," Pasek said. "The most important one, which we’ve worked with most recently, is iron-nickel phosphide, known as schreibersite."

Schreibersite is a metallic compound that is extremely rare on Earth. But it is ubiquitous in meteorites, especially iron meteorites, which are peppered with schreibersite grains or slivered with pinkish-colored schreibersite veins.

Last April, Pasek, UA undergraduate Virginia Smith, and Lauretta mixed schriebersite with room-temperature, fresh, de-ionized water. They then analyzed the liquid mixture using NMR, nuclear magnetic resonance.

"We saw a whole slew of different phosphorus compounds being formed," Pasek said. "One of the most interesting ones we found was P2-O7 (two phorphorus atoms with seven oxygen atoms), one of the more biochemically useful forms of phosphate, similar to what’s found in ATP."

Previous experiments have formed P2-07, but at high temperature or under other extreme conditions, not by simply dissolving a mineral in room-temperature water, Pasek said.

"This allows us to somewhat constrain where the origins of life may have occurred," he said. "If you are going to have phosphate-based life, it likely would have had to occur near a freshwater region where a meteorite had recently fallen. We can go so far, maybe, as to say it was an iron meteorite. Iron meteorites have from about 10 to 100 times as much schreibersite as do other meteorites.

"I think meteorites were critical for the evolution of life because of some of the minerals, especially the P2-07 compound, which is used in ATP, in photosynthesis, in forming new phosphate bonds with organics (carbon-containing compounds), and in a variety of other biochemical processes," Pasek said.

"I think one of the most exciting aspects of this discovery is the fact that iron meteorites form by the process of planetesimal differentiation," Lauretta said. That is, the building-blocks of planets, called planestesmals, form both a metallic core and a silicate mantle. Iron meteorites represent the metallic core, and other types of meteorites, called achondrites, represent the mantle.

"No one ever realized that such a critical stage in planetary evolution could be coupled to the origin of life," he added. "This result constrains where, in our solar system and others, life could originate. It requires an asteroid belt where planetesimals can grow to a critical size – around 500 kilometers in diameter – and a mechanism to disrupt these bodies and deliver them to the inner solar system."

Jupiter drives the delivery of planetesimals to our inner solar system, Lauretta said, thereby limiting the chances that outer solar system planets and moons will be supplied with the reactive forms of phosphorus used by biomolecules essential to terrestrial life.

Solar systems that lack a Jupiter-sized object that can perturb mineral-rich asteroids inward toward terrestrial planets also have dim prospects for developing life, Lauretta added.

Pasek is talking about the research today (Aug. 24) at the 228th American Chemical Society national meeting in Philadelphia. The work is funded by the NASA program, Astrobiology: Exobiology and Evolutionary Biology.

Lori Stiles | EurekAlert!
Further information:
http://www.arizona.edu

More articles from Earth Sciences:

nachricht Research spotlights a previously unknown microbial 'drama' playing in the Southern Ocean
31.07.2015 | National Science Foundation

nachricht Past and present sea levels in the Chesapeake Bay Region, USA
29.07.2015 | Geological Society of America

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Tool making and additive technology exhibition: Fraunhofer IPT at Formnext

31.07.2015 | Trade Fair News

First Siemens-built Thameslink train arrives in London

31.07.2015 | Transportation and Logistics

California 'rain debt' equal to average full year of precipitation

31.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>