Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water on Mars not easy to find

11.08.2004


Suspected large lakebeds that once were scattered on the planet Mars have not yet been found, say the research team that operated the twin rovers Spirit and Opportunity. Their work appears in the current issue of Science magazine.

Members of the team have written several articles in the magazine, among them "The Spirit Rover’s Athena Science Investigation at Gusev Crater" that deals with the search for water on the red planet, and "Pancam Multispectral Imaging Results from the Spirit Rover at Gusev Crater" that focuses on camera images taken by the rovers as they slowly traversed Mars’ surface.

Texas A&M University research Mark Lemmon, a member of the Mars rover team and professor in the College of Geosciences, is one of the co-authors of the two articles.



Two rovers, Spirit and Opportunity, landed on Mars in January on different areas of the planet to perform a variety of scientific work and experiments. One of the key goals of the $820 million NASA mission was to locate the presence of large quantities of water on Mars, which scientists believed were once there – mainly in the form of large lakes and perhaps even small seas.

Only the results of the Spirit rover are detailed in the articles, with information about Opportunity to be published in a future issue. Although the rovers uncovered the presence of small amounts of water in rock samples, no large lakebeds have yet to be found, Lemmon says. "We wanted to explore two specific sites on Mars that we thought were once large areas of water," Lemmon explains. "We selected Gusev Crater for Spirit to roam through because it appeared to have once contained a lake. But so far, we have uncovered no evidence of such a lake or any other large body of water. We did find fairly recent evidence of lava flows, and it appears many of the rocks on Mars are from volcanic eruptions. We have found non-volcanic rocks with Opportunity and may yet do so with Spirit," Lemmon notes.

"If large bodies of water were on Mars, they may be buried very deep under the surface, too deep for the rovers to locate such possible water sites. "NASA had a slogan, ’Follow the water,’ meaning we should try to learn whatever we could about water on Mars," Lemmon adds. "If there were ever large amounts of water on Mars, that means there could be life there, and that’s always been the big question."

Lemmon says the team did learn that Martian dust is everywhere on the planet. "The dust is so thick it coats everything, including our equipment on the rovers, so thick it clogged up solar panels we used to power some of the machinery on the rovers," he added.

Lemmon says the photographs taken by the rovers were spectacular, both in their clarity and the quality of the images. "We got some wide panoramic shots that have never been taken before," he notes. "The rovers also got photos of Martian landscape that were extremely useful to us. We got some shots of small hills that were very sharp." Some 3-D photos were also taken, which proved to be very informative, Lemmon added.

Lemmon says Spirit and Opportunity are still active on Mars, but they will soon be entering a hibernation stage because of limited sunlight. The rovers rely on solar energy for much of their power, and a sol – a Martian day – now has less and less sunlight.

"We’ll slow things down from now through October," he explains. "After that, we’ll have more sunlight to do some other things."

Keith Randall | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>