Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers unearth ancient continental rift activity

28.07.2004


Discovery suggests presence of diamonds in northern Saskatchewan

Researchers at the University of Alberta have found evidence that a 2,000-kilometre corridor stretching diagonally across northern Canada was under tremendous pressure to split in two about 2.7 billion years ago. It is the first evidence suggesting enormous continental landforms and plate tectonics existed that long ago. "Rifts are one hallmark of plate tectonics, and there is a huge debate in our field about whether or not large continents and plate tectonics existed on Earth in the Archean age, which is pre-2.5 billion years ago," said Dr. Larry Heaman, a professor of earth sciences at the U of A.

"Our findings suggest that a form of plate tectonics did occur in the Archean," said Dr. Russell Hartlaub, a post-doctoral fellow working with Heaman and lead author of a paper on the Archean rift discovery that appears recently in Precambrian Research.



For the past six years, the researchers have been studying rocks in the northern Lake Athabasca region of Saskatchewan. These rocks are collectively known as the Murmac Bay Group, and they are part of a corridor that runs from northeast Alberta to Baffin Island. Recently, Hartlaub and his colleagues discovered a sequence of Archean rocks--mainly quartzite and basalt--along this corridor that are consistent with "rift-related" activity.

Hartlaub analysed and dated the rocks before determining that the Murmac Bay Group is evidence of a failed rift in the ancient continent that has been named Nunavutia. He estimates the continent was larger than England, France and Germany combined. However, the researchers don’t know yet if rifting succeeded in splitting any part of Nunavutia to form an ocean basin.

In studying the Murmac Bay Group, the researchers also discovered minerals in northern Saskatchewan that are 3.9 billion years old, and they’ve found rocks in the same area that date back 3.1 billion years. Heaman noted that these are some of the oldest minerals ever discovered. (In 1989, Dr. Sam Bowring of the Massachusetts Institute of Technology (MIT) found the oldest rock ever discovered on Earth, dating back four billion years, in Canada’s Northwest Territories.)

Aside from the significance of the discovery to researchers trying to understand Earth’s history and evolution, minerals this old will certainly draw the attention of people in the diamond exploration industry, Heaman said.

"Virtually all diamond deposits come from areas where you can find ancient crust preserved, such as we’ve found in northern Saskatchewan," he added.

"It’s really exciting to find evidence of this large, ancient continent and these ancient crustal processes," Hartlaub said. "Our next step is to analyse the geochemical signatures of the minerals we’ve found to see if we can get an even better idea of what our Earth looked like more than two-and-a-half billion years ago."

Ryan Smith | EurekAlert!
Further information:
http://www.ualberta.ca

More articles from Earth Sciences:

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht What makes corals sick?
11.12.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>