Global Positioning System for Mars?

A new study examines the factors that would enable researchers to create a Martian version of the Global Positioning System widely used on Earth. Mendillo et al. investigated the planet’s ionospheric characteristics with radio signal data taken from the Mars Global Surveyor spacecraft and analyzed how local time, latitude, and solar cycle patterns would affect Mars’ electron content and contribute to errors in estimating exact locations on the planet’s surface.

They note that, as seen on Earth, a planet’s ionosphere imparts a delay on radio transmissions between an orbiting satellite and ground receiving stations that can hinder precise location of ground sites. The magnitude of the delay effect on Mars would depend on the radio frequency selected for its satellite navigation system, or it could be overcome by using a dual-frequency system.

The authors suggest that a constellation of GPS-like satellites could be introduced to improve navigation and provide continual monitoring of Martian features and locations with an expected margin of error of around one meter [three feet].

Title: Ionospheric effects upon a satellite navigations system at Mars

Media Contact

Michael Mendillo Radio Science

More Information:

http://www.agu.org

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors