Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brick chimneys can double as strong-motion sensors in earthquakes

23.06.2004


When the Nisqually earthquake struck western Washington in 2001, brick chimneys in parts of West Seattle and Bremerton were left looking like so much straw after the Big Bad Wolf had gone huffing and puffing through. Hundreds of brick chimneys at the north end of West Seattle and north of Puget Sound Naval Shipyard in Bremerton were seriously damaged or toppled by the magnitude 6.7 temblor.

New research suggests the main culprit might have been the Seattle fault, even though the earthquake was centered 35 miles farther south, near Olympia, and 35 miles deep. The Seattle fault runs from the Kitsap Peninsula across Puget Sound and through southern Seattle, and continues into eastern King County.

The Seattle fault did not move during the earthquake. However, it appears one of its strands might have acted something like a megaphone, gathering the seismic waves and bending their energy toward the surface directly above, said Derek Booth, a University of Washington research associate professor of Earth and space sciences and of civil and environmental engineering.



Booth is the lead author of a paper examining patterns of damage to unreinforced brick chimneys following the earthquake on Feb. 28, 2001, damage comparable to what resulted from a similar western Washington earthquake in 1965. The paper appears in the June edition of the Bulletin of the Seismological Society of America. Co-authors are Ray Wells and Robert Givler of the U.S. Geological Survey in Menlo Park, Calif.

In the days immediately following the quake, the researchers surveyed 60,000 chimneys, block by block, over about 30 square miles. They identified 1,556 damaged chimneys and noted that damage was heavily clustered in certain areas, particularly at the north end of West Seattle and, to a lesser extent, in Bremerton’s residential neighborhoods just north of the naval shipyard.

They noted that the damage did not strongly correspond to the distance from the epicenter or the presence of soft soils, unusual topography or steep slopes.

Besides West Seattle and Bremerton, the researchers also surveyed chimney damage in a number of other Seattle neighborhoods, including Magnolia, Wallingford, Green Lake, Beacon Hill, Madrona and South Park. Damage in these areas was far less pronounced and more sporadic. Even a section of Madrona, the only other survey area atop a Seattle fault strand, didn’t have damage similar to West Seattle or Bremerton, but it is unclear why, Booth said.

A network of strong-motion sensors throughout the region has demonstrated that the areas with heavy chimney damage typically endured stronger shaking in the Nisqually quake.

"We already knew what the overall pattern of ground shaking was, and we wanted to see if the chimney data reflected that. It did," Booth said. "What the chimneys also do, however, is provide a much greater spatial resolution than the instruments can. The instruments are separated by a half mile in a few places but more than three miles in other places, and if there are differences in shaking over a short distance the instruments will never pick that up because there just aren’t enough of them."

In the case of West Seattle, strong shaking from the Nisqually earthquake was detected by a strong-motion detector at a fire station toward the north end of the neighborhood but much weaker shaking was recorded at a school about 1.5 miles farther south. The sensor data did not tell precisely where in between the intense shaking ceased, but the chimneys indicated the drop-off seemed to have occurred around Southwest Charlestown Street, about midway between the two sensors.

Booth noted that the evidence for the Seattle fault’s role in the strong ground shaking is still only circumstantial, but he added that the new research supports what has been suggested by previous studies from other areas of the country.

"West Seattle clearly has the strongest damage gradient. It’s pretty strong in Bremerton too, but the maximum damage there wasn’t as great," he said.

"We believe they are genuinely reflecting differences in the strength of shaking and not the sudden replacement of good chimney contractors with bad contractors, or the sudden replacement of good mortar with bad mortar," he said.

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Earth Sciences:

nachricht Large-Mouthed Fish Was Top Predator After Mass Extinction
26.07.2017 | Universität Zürich

nachricht Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds
25.07.2017 | University of Illinois at Urbana-Champaign

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>