Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Could global warming mean less sunshine and less rainfall?

21.05.2004


the last four decades, scientists have observed a 1.3% per decade decline in the amount of sun reaching the Earth’s surface. This phenomenon, coined “solar dimming” or “global dimming,” is due to changes in clouds and air pollution that are impeding the suns ability to penetrate. Scientists believe that the combination of growing quantities of man-made aerosol particles in the atmosphere and more moisture are causing the cloud cover to thicken.


Reduction of solar radiance in watts per square meter



Despite this decline in solar radiation, the Earth’s surface continues to warm. New research, led by Dr. Beate Liepert of the Lamont-Doherty Earth Observatory at Columbia University, suggests an explanation for this paradox, as well as new findings that a warmer world may mean a dryer and dimmer world.

Published in Geophysical Research Letters, Liepert et al. show findings suggesting that solar radiation is being both reflected and trapped in the clouds and aerosol layer, thereby decreasing the amount of radiation that would ordinarily hit the Earth’s surface. It is widely agreed that greenhouse gas trapping is causing the Earth’s surface temperatures to rise. What has not been understood until now is that temperatures would be rising faster or higher if the aerosol layer and cloud cover were not reflecting some of the radiation away. Further, the researchers conclude that the imbalance of less solar radiation with warming surface temperatures will lead to weaker turbulent heat fluxes resulting in reduction in evaporation and precipitation, which will lead to a dryer world.


Although rising temperatures should moisten the atmosphere, the research shows that man-made airborne aerosols will condense the water to form smaller cloud droplets. This process is contributing to the observed thickening of the Earth’s cloud cover. Smaller droplets are not heavy enough to sink through the air as rain. As a result, the cloud cover lasts longer and there is less rain.

“Water has a characteristic residence time in the atmosphere before it gets rained out. In a warmer world, this residence time is longer because a warmer atmosphere can hold more water. Aerosols affect clouds by suppressing rain and increasing its residence time. The overall effect is that rainwater is about half a day older,” said Liepert, Doherty Associate Research Scientist, Lamont-Doherty Earth Observatory.

Examples of data supporting this new hypothesis include studies indicating a steady decline of water evaporation in the Northern Hemisphere over the past 50 years. Over the last 60 years, large regions of Eurasia have seen soil moisture increase by more than one centimeter per decade, yet no significant changes in precipitation are being seen.

Solar Dimming has also resulted in an observable difference in the lightness of every day. The atmosphere is more polluted and therefore darker, even in remote areas. The fog you see today is about 3% thicker than it was 40 years ago.

Working with Johann Feichter, and Erich Roeckner, Max Planck Institute for Meteorology, Hamburg, Germany, and Ulrike Lohmann, Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Liepert conducted model simulations for this research that included pre-industrial aerosol and greenhouse gas conditions and present day conditions. Their models incorporated aerosol absorption of sunlight, heating of the aerosol layer, aerosol particles acting as cloud condensation nuclei and increasing reflective power, and cloud lifetime by the suppression of drizzle over oceans.

“Aerosols are highly variable in space and time, which is why aerosol forcing of climate has generally not been taken into account in climate studies. Furthermore, aerosols are found near the Earth’s surface and affect mainly the fluxes of energy and water at the surface. Because good surface observations are sparse, validating models is a very difficult task. Carbon dioxide concentrations are much more homogeneous and easier to measure than aerosol concentrations,” said Liepert. “These new ideas on the affects of aerosols might open up many avenues and solve more discrepancies in the climate change debate.“

This research was funded by the National Science Foundation and the Max Planck Society.

The Earth Institute at Columbia University is among the world’s leading academic centers for the integrated study of Earth, its environment, and society. The Earth Institute builds upon excellence in the core disciplines -- earth sciences, biological sciences, engineering sciences, social sciences and health sciences -- and stresses cross-disciplinary approaches to complex problems. Through its research training and global partnerships, it mobilizes science and technology to advance sustainable development, while placing special emphasis on the needs of the world’s poor.

The Lamont-Doherty Earth Observatory, a member of The Earth Institute at Columbia University, is one of the world’s leading research centers examining the planet from its core to its atmosphere, across every continent and every ocean. From global climate change to earthquakes, volcanoes, environmental hazards and beyond, Observatory scientists provide the basic knowledge of Earth systems needed to inform the future health and habitability of our planet. For more information, visit www.ldeo.columbia.edu.

Mary Tobin | Earth Institute News
Further information:
http://www.earth.columbia.edu/news/2004/story05-14-04.html

More articles from Earth Sciences:

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

nachricht What makes erionite carcinogenic?
13.01.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>