Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unusual mechanism of the Ambrym and Pentecost

03.05.2004


An earthquake shook the South-West Pacific islands of Ambrym and Pentecost on 26 November 1999. It was the strongest thrust event ever recorded in central Vanuatu. Offshore and onshore data gathered by IRD researchers yielded clues as to the tectonic movements involved in the earthquake. A resulting model of the rupture mechanism showed that in this area of Vanuatu, slipping motions of the Australian oceanic plate under the Pacific plate are blocked to the West, which generates strong stresses to the East of the island arc (back arc). This situation makes the Ambrym earthquake a rare example of a back arc intraplate thrust event, occurring behind an oceanic subduction zone.



The Vanuatu island arc, in the South-West Pacific, is 1 700 km long. It corresponds to a convergence zone where the Australian plate is slipping eastwards under the North Fiji Basin, which is part of the Pacific plate, thus generating earthquakes. On 26 November 1999, the central islands of Vanuatu, particularly Ambrym and Pentecost, were strongly shaken by a 7.5 magnitude surface earthquake followed by a tsunami. The earthquake and the many landslips it generated caused 10 deaths and considerable damage. Immediately after the earthquake, IRD researchers conducted onshore and offshore investigations in order to unravel the tectonic movements and the rupture mechanisms brought into play. The eastern end of Ambrym was uplifted by more than a metre, whereas Pentecost to the North and Paama and Lopévi Islands to the South were not. Such vertical movement was indicated by biological markers in the form of the death of coral colonies and, along the coastline, by the appearance of a white band resulting from desiccation of encrusting red algae. Seismic data revealed the focus to be at the northern point of Ambrym, at about 15 km depth. The amount of uplift observed decreases rapidly towards the West and falls away to nothing a few kilometres from the eastern point of the island. This decrease confirms that the earthquake epicentre was nearby and fairly close to the surface. Moreover, measurement of the co-seismic horizontal movements produced by the earthquake at the different GPS network sites deployed over all the central islands showed that the west point of Ambrym was thrust 35 cm towards the East.

Combined data on aftershock distribution and vertical and horizontal motion revealed a strong thrust movement, with average slip of 6.5 m, of the North Fijian Basin crust under the New Hebrides arc that occurred along a West-dipping North-South surface fault emerging East of Ambrym and Pentecost. Ocean floor mapping along the eastern edges of Ambrym and Pentecost indicated a large fault scarp - 400 m wide, 40 km long and 900 m high - oriented 165° N. This scarp appears to correspond to the surface emergence of a rupture zone involved in the earthquake of 26 November 1999 (1).


The uplift observed at the eastern point of Ambrym appears to fall into a long-term process, begun between a few thousand and several million years B.P. The boundary of the uplift zone coincides with the point on the south-east coast of Ambrym where the fringe lagoon has disappeared. Moreover, the discovery of coral banks at heights of 2 to 10 m on the stretch of coast that suffered this co-seismic uplift suggests that the same thrust fault is reactivated regularly, tracing in this way the East coast of Ambrym and increasing the size of the scarp situated East of the island. Dating of the coral banks was conducted by measuring the Uranium/Thorium ratio present in the corals. From it an estimate was made of an average uplift rate of 3–4 mm per year over the course of the past 8000 years. The research team thus reckoned that the thrust fault scarp East of Ambrym resulted from activity dating back to 15 000 to 60 000 years. The return period of strong earthquakes has been calculated at between 100 and 375 years.

The November 1999 earthquake and the seismic cycle along the zone East of the island arc therefore show the plate to have undergone thrust deformation. Convergence produces thickening of the back-arc crust and continual generation of relief. This is how the islands of Maewo and Pentecost came into being. The thrust zone involved in the central Vanuatu earthquake therefore appears to be an active thrust front, which gradually incorporates fragments of lithosphere from the North Fiji Basin. This situation constitutes a rare example of a back-arc intraplate thrust event involving a thrust front behind an oceanic subduction zone.


Mina Vilayleck – DIC
Traduction : Nicholas Flay

For further information

Contact: Bernard Pelletier, IRD - UMR 082, Géosciences Azur, BP A5, 98848 Nouméa, New-Caledonia. Tel.: 687-26-1000. Fax: 687-26-4326. Email : bernard.pelletier@noumea.ird.nc

Contacts IRD Communication : Bénédicte Robert (press officer), tel.: 33-1-4803-7519, Email: presse@paris.ird.fr

References:
Pelletier B., Régnier M., Calmant S. Pillet R., Cabioch G., Lagabrielle Y., Boré J.M, et al., 2000 - Le séisme d’Ambrym-Pentecôte (Vanuatu) du 26 novembre 1999 (Mw : 7,5) : données préliminaires sur la séismicité, le tsunami et les déplacements associés, C.R. Acad. Sci., Paris, Sciences de la Terre et des Planètes 331, 21–8
Régnier M, Calmant S., Pelletier B., Lagabrielle Y., Cabioch G., 2003 - The Mw 7.5 Ambrym earthquake, Vanuatu : A back arc intraplate thrust event, Tectonics, vol.22, n°4, 1034, 8, 1–14.
Lagabrielle Y., Pelletier B., Cabioch G., Régnier M., Calmant S., 2003 - Coseismic and long-term vertical displacement due to back arc shortening, central Vanuatu : Offshore and onshore data following the Mw 7.5, 26 November 1999 Ambrym earthquake, Journal of Geophysical research, vol.108, B11, 2519

To obtain illustrations concerning this research
Contact Indigo Base, IRD picture library, Claire Lissalde or Danièle Cavanna, Tel.: 33-1-48-03-7899, Email: indigo@paris.ird.fr

Bénédicte Robert | EurekAlert!
Further information:
http://www.ird.fr/fr/actualites/fiches/2004/fiche193.htm

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>