Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tornadoes, lightning and hurricanes: scientists at Alabama research center study severe weather

29.04.2004


Scientists at the National Space Science and Technology Center (NSSTC) in Huntsville, Ala., are using information gleaned from NASA satellites, aircraft and field research to better understand dynamics behind tornadoes, lightning, hurricanes and other destructive forces of nature.


Based at the National Space Science and Technology Center (NSSTC) in Huntsville, Ala., Tony Kim and Dr. Richard Blakeslee of NASA’s Marshall Space Flight Center in Huntsville test aircraft sensors used to measure the electric fields produced by thunderstorms as part of NASA’s Altus Cumulus Electrification Study (ACES). In addition to aircraft, NSSTC scientists use information gleaned from NASA satellites and field research to better understand dynamics behind lightning, tornadoes hurricanes and other destructive forces of nature.

The NSSTC is a partnership with the Marshall Center, Alabama universities, industry and federal agencies. It enables scientists, engineers and educators to share research and facilities, focusing on space science, Earth sciences, materials science, biotechnology, propulsion, information technology and optics. (NASA/Marshall/Doug Stoffer)



"A better understanding of severe weather can help people year-round," said Dr. Tim Miller of the Global Hydrology and Climate Center (GHCC) in Huntsville. "The Center is conducting a variety of unique research projects that could someday help forecasters better predict and prepare the public for severe weather."

The GHCC is one of seven research centers at the National Space Science and Technology Center. Center scientists have played leadership roles in better understanding tornadoes, lightning, hurricanes and other natural phenomenon.


Sometimes, researchers have found, one dangerous element of severe weather is a key to understanding another. Using a combination of ground- and space-based weather monitoring equipment, NSSTC scientists have documented dozens of cases in which lightning rates increased dramatically as severe storms developed. This offers an early clue for weather forecasters to take a more detailed look at other storm characteristics with radar -- and perhaps a chance for them to get warnings out earlier, saving more lives.

Other research answers the question of where lightning is more likely to occur. A map created in 2001 by National Space Science and Technology Center scientists offered the first animated glimpse of annual lightning activity worldwide.

Compiled using satellite data, each frame of the animation represents the average lightning activity worldwide on a single day of the year. The map shows that lightning avoids the ocean, but frequently strikes in Florida. It’s likely to strike in the Himalayas and even more so in central Africa. The animated maps also clearly show how lightning-producing storms are caused by the Sun’s daily heating of Earth’s surface and atmosphere. This was the first time scientists mapped the global distribution of lightning, noting variations by latitude, longitude, day of year and time of day.

In another first, to better understand both the causes of an electrical storm’s fury and its effects on our home planet, NSSTC scientists in 2002 used a tool no atmospheric scientist had ever used before to study lightning — a remotely piloted aircraft, commonly called an uninhabited aerial vehicle or "UAV." This marked the first time an uninhabited aerial vehicle was used to conduct lightning research.

This project, called the Altus Cumulus Electrification Study, united researchers from NASA, universities and industry. By chasing down thunderstorms in Florida using the remotely piloted aircraft, the scientists achieved dual goals — gathering weather data safely and testing new aircraft technology.

Such studies have the potential to help forecasters improve weather prediction, especially for storms that may produce severe weather. And, by learning more about these individual storms, scientists hope to better understand weather on a global scale.

Sometimes, the greatest barrier to more detailed forecasts is the amount and quality of data available to forecasters. Researchers at the center are collaborating with other agencies to change that.

A new generation of weather satellites, to be launched around 2011 by National Oceanic and Atmospheric Administration, will carry advanced sensors capable of producing higher-resolution images than today’s satellites. A sharper, richer picture of the ever-changing atmosphere — available to forecasters in near real-time — will bring a new level of detail and accuracy to short-term forecasts.

But in the meantime, sensors of this caliber are already in orbit aboard NASA’s newest climate research satellites, Terra and Aqua. Supported by scientists at the National Space Science and Technology Center, collaboration between the National Weather Service and NASA is laying the foundation for using new satellite technology right now.

Known as Short-term Prediction Research and Transition, or SPoRT, the program uses data from a sensor called MODIS — or MODerate-resolution Imaging Spectrometer — aboard NASA satellites. MODIS gleans between 16 and 100 times more detail than current weather satellites, giving researchers a head start in incorporating highly detailed data into weather forecasts.

The NSSTC is also home to hurricane researchers who helped lead a series of field research investigations called Convection And Moisture Experiments, or CAMEX. Sponsored by the Earth Science Enterprise at NASA Headquarters in Washington, the most-recent CAMEX mission in 2001 united researchers from 10 universities, five NASA centers and the National Oceanic and Atmospheric Administration.

Armed with airplanes, satellite observations, ground-based radar and a fleet of other sophisticated instruments, the researchers met the potentially deadly and destructive storms head-on, gathering data vital to improve hurricane modeling and prediction.

Monitoring storms simultaneously from near sea level to 65,000 feet, the researchers monitored temperature, pressure, humidity, precipitation, wind speed, lightning and ice crystal sizes.

NSSTC researchers are currently using this information to identify hurricane precipitation and cloud electrical field patterns and to study how they relate to hurricane intensity. They are also studying how the characteristics of a landfalling hurricane are changed once the storm begins to interact with the coastline. Together, lessons learned from these studies have the potential to lead to more accurate interpretations of satellite information and methods for using this information for hurricane intensity forecasting.

The National Space and Technology Center is a partnership among NASA’s Marshall Space Flight Center in Huntsville, Alabama research universities, industry and other federal agencies.

Steve Roy | MSFC
Further information:
http://www.msfc.nasa.gov/news/NSSTC/news/releases/2004/N04-005.html

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>