Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arctic carbon a potential wild card in climate change scenarios

21.04.2004


The Arctic Ocean receives about 10 percent of Earth’s river water and with it some 25 teragrams [28 million tons] per year of dissolved organic carbon that had been held in far northern bogs and other soils.



Now an international team of U.S. and German scientists, including some funded by the National Science Foundation, have used carbon-14 dating techniques to determine that most of that carbon is fairly young and not likely to affect the balance of global climate.

They reported their findings in the March issue of Geophysical Research Letters, a publication of the American Geophysical Union.


Although the current carbon load does not seem likely to affect global climate significantly, they caution in their report that a well-documented Arctic warming trend could result in ancient carbon-a reservoir of the gas currently locked into peat bogs-being added to the mix and contributing to the well- documented Arctic warming trend.

"If current warming trends in the Arctic continue, we can expect to see more of the old carbon now sequestered in northern soils enter the carbon cycle as carbon dioxide. This will act as a positive feedback, tending to enhance the greenhouse effect and accelerate global warming," said Ronald Benner, an NSF-funded researcher at the University of South Carolina.

NSF is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of nearly $5.58 billion. National Science Foundation funds reach all 50 states through grants to nearly 2,000 universities and institutions.

The team studied rivers in northern Russia and Alaska, along with the Arctic Ocean itself. Benner conducted some of his research as part of the Western Shelf-Basin Interactions research project, which is jointly funded by NSF and the U.S. Office of Naval Research.

Previously, scientists had not known the age of the carbon that reaches the ocean. Was it recently derived from contemporary plant material, or had it been locked in soils for hundreds or thousands of years and therefore not part of Earth’s recent carbon cycle?

The new findings complement recently published work by Laurence C. Smith, an NSF-funded researcher at the University of California, Los Angeles, indicating that massive Siberian peat bogs, widely known as the permanently frozen home of untold kilometers of moss and uncountable hordes of mosquitoes, also are huge repositories for gases that are thought to play an important role in the Earth’s climate balance.

Those gases, carbon dioxide and methane, are known to trap heat in the Earth’s atmosphere, but the enormous amounts of the gases contained in the bogs haven’t previously been accounted for in climate-change models.

The full story of that finding is here:
http://www.nsf.aov/od/lpa/news/O4/prO406.htm

To read an abstract of the full article in Geophysical Research Letters, see http://www.agu.org/pubs/crossref/2004.../2003GLO19251.shtml

To read the full text of the AGU news release, see: http://www.agu.org/sci_soc/prrl/prrlO412.htm/.

What the researchers say:

"Many scientists are wondering whether current warming trends in the Arctic will pick the lock on aged soil carbon and release this material back into the active carbon cycle and the atmosphere. Our results suggest this hasn’t happened yet, but we need to monitor this situation closely using multiple approaches."-Ronald Benner, principal investigator.

NSF comments regarding the research discovery:

"Identifying the fate of carbon compounds mobilized from the vast areas of frozen wetlands in the Arctic will be a critical step in understanding the Arctic system and how it will respond to the climatic forces acting upon it. How much carbon goes to the ocean, and how much to the atmosphere and in what form, are key questions we need to answer in order to see the directions the future holds for us."-Nell Swanberg, director of NSF’s Arctic System Science(ARCSS) Program.

Peter West | NSF
Further information:
http://www.nsf.gov
http://www.nsf.gov/od/lpa/newsroom/pr.cfm?ni=83

More articles from Earth Sciences:

nachricht Mountain glaciers shrinking across the West
23.10.2017 | University of Washington

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>