Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arctic carbon a potential wild card in climate change scenarios

21.04.2004


The Arctic Ocean receives about 10 percent of Earth’s river water and with it some 25 teragrams [28 million tons] per year of dissolved organic carbon that had been held in far northern bogs and other soils.



Now an international team of U.S. and German scientists, including some funded by the National Science Foundation, have used carbon-14 dating techniques to determine that most of that carbon is fairly young and not likely to affect the balance of global climate.

They reported their findings in the March issue of Geophysical Research Letters, a publication of the American Geophysical Union.


Although the current carbon load does not seem likely to affect global climate significantly, they caution in their report that a well-documented Arctic warming trend could result in ancient carbon-a reservoir of the gas currently locked into peat bogs-being added to the mix and contributing to the well- documented Arctic warming trend.

"If current warming trends in the Arctic continue, we can expect to see more of the old carbon now sequestered in northern soils enter the carbon cycle as carbon dioxide. This will act as a positive feedback, tending to enhance the greenhouse effect and accelerate global warming," said Ronald Benner, an NSF-funded researcher at the University of South Carolina.

NSF is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of nearly $5.58 billion. National Science Foundation funds reach all 50 states through grants to nearly 2,000 universities and institutions.

The team studied rivers in northern Russia and Alaska, along with the Arctic Ocean itself. Benner conducted some of his research as part of the Western Shelf-Basin Interactions research project, which is jointly funded by NSF and the U.S. Office of Naval Research.

Previously, scientists had not known the age of the carbon that reaches the ocean. Was it recently derived from contemporary plant material, or had it been locked in soils for hundreds or thousands of years and therefore not part of Earth’s recent carbon cycle?

The new findings complement recently published work by Laurence C. Smith, an NSF-funded researcher at the University of California, Los Angeles, indicating that massive Siberian peat bogs, widely known as the permanently frozen home of untold kilometers of moss and uncountable hordes of mosquitoes, also are huge repositories for gases that are thought to play an important role in the Earth’s climate balance.

Those gases, carbon dioxide and methane, are known to trap heat in the Earth’s atmosphere, but the enormous amounts of the gases contained in the bogs haven’t previously been accounted for in climate-change models.

The full story of that finding is here:
http://www.nsf.aov/od/lpa/news/O4/prO406.htm

To read an abstract of the full article in Geophysical Research Letters, see http://www.agu.org/pubs/crossref/2004.../2003GLO19251.shtml

To read the full text of the AGU news release, see: http://www.agu.org/sci_soc/prrl/prrlO412.htm/.

What the researchers say:

"Many scientists are wondering whether current warming trends in the Arctic will pick the lock on aged soil carbon and release this material back into the active carbon cycle and the atmosphere. Our results suggest this hasn’t happened yet, but we need to monitor this situation closely using multiple approaches."-Ronald Benner, principal investigator.

NSF comments regarding the research discovery:

"Identifying the fate of carbon compounds mobilized from the vast areas of frozen wetlands in the Arctic will be a critical step in understanding the Arctic system and how it will respond to the climatic forces acting upon it. How much carbon goes to the ocean, and how much to the atmosphere and in what form, are key questions we need to answer in order to see the directions the future holds for us."-Nell Swanberg, director of NSF’s Arctic System Science(ARCSS) Program.

Peter West | NSF
Further information:
http://www.nsf.gov
http://www.nsf.gov/od/lpa/newsroom/pr.cfm?ni=83

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>