Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Minerals are key to earthquakes deep in the Earth

01.04.2004


A team of geologists can tell you more about earthquakes in "Middle Earth" than can the whole trilogy of "The Lord of the Rings."



Specifically, how do earthquakes happen in Earth’s tightly squeezed middle layers where pressure is far too great to allow any shifting of the rock? According to a paper published in the April 1 issue of the journal Nature, breakdown of the mineral serpentine provides enough wiggle room to trigger an earthquake. The report suggests a new mechanism to explain how quakes can occur at such depths.

"This exciting work addresses the central question of how large earthquakes can be generated in deep subduction zones," said Robin Reichlin, program director in the National Science Foundation (NSF) division of earth sciences, which funded the research. "This has been a much-debated topic, and this work goes a long way toward showing that dehydration of minerals plays an important role in this process."


Haemyeong Jung, Harry W. Green II and Larissa Dobrzhinetskaya of the University of California at Riverside, point out that while it is impossible to break anything by normal brittle fracture at pressures higher than those found at only a few 10s of kilometers (km) deep, earthquakes occur continuously at depths close to 700 km.

What is the explanation of this paradox?

A mechanism called "dehydration embrittlement" breaks down the mineral serpentine, to form the mineral olivine, accompanied by the release of water. That water can assist brittle failure at high pressure, but how? Green explains that before now, scientists have expected faulting instability only if the volume change during serpentine breakdown is positive.

In their article, the team reports experiments conducted between 10,000 and 60,000 times the pressure of the atmosphere at sea level, corresponding to depths in the earth of 30-190 km. Over that pressure range, the volume upon dehydration of serpentine changes from strongly positive to markedly negative, yet the faulting instability remains.

The microstructures preserved in the rocks after faulting provide insight into why this is so. The results confirm that earthquakes can be triggered by serpentine breakdown down to depths of as much as 250 km.

"I am becoming more and more convinced that mineral reactions also are involved in triggering shallow earthquakes such as those that threaten California," Green said. "Our hope is that we learn more about the thing we know least about, the initiation part of these earthquakes, how they get started. This is what we are trying to understand."


Additional Contacts:
NSF Program Contact: Robin Reichlin, rreichli@nsf.gov, 703-292-8550
UC-RiversideContact: Kris Lovekin, kris.lovekin@ucr.edu, 909-787-2495

NSF is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of nearly $5.58 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives about 40,000 competitive requests for funding, and makes about 11,000 new funding awards. NSF also awards over $200 million in professional and service contracts yearly.

Receive official NSF news electronically through the e-mail delivery system, NSFnews. To subscribe, send an e-mail message to join-nsfnews@lists.nsf.gov. In the body of the message, type "subscribe nsfnews" and then type your name. (Ex.: "subscribe nsfnews John Smith")

Cheryl Dybas | NSF
Further information:
http://www.nsf.gov
http://www.nsf.gov/od/lpa/news/media/start.htm

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>