Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Minerals are key to earthquakes deep in the Earth

01.04.2004


A team of geologists can tell you more about earthquakes in "Middle Earth" than can the whole trilogy of "The Lord of the Rings."



Specifically, how do earthquakes happen in Earth’s tightly squeezed middle layers where pressure is far too great to allow any shifting of the rock? According to a paper published in the April 1 issue of the journal Nature, breakdown of the mineral serpentine provides enough wiggle room to trigger an earthquake. The report suggests a new mechanism to explain how quakes can occur at such depths.

"This exciting work addresses the central question of how large earthquakes can be generated in deep subduction zones," said Robin Reichlin, program director in the National Science Foundation (NSF) division of earth sciences, which funded the research. "This has been a much-debated topic, and this work goes a long way toward showing that dehydration of minerals plays an important role in this process."


Haemyeong Jung, Harry W. Green II and Larissa Dobrzhinetskaya of the University of California at Riverside, point out that while it is impossible to break anything by normal brittle fracture at pressures higher than those found at only a few 10s of kilometers (km) deep, earthquakes occur continuously at depths close to 700 km.

What is the explanation of this paradox?

A mechanism called "dehydration embrittlement" breaks down the mineral serpentine, to form the mineral olivine, accompanied by the release of water. That water can assist brittle failure at high pressure, but how? Green explains that before now, scientists have expected faulting instability only if the volume change during serpentine breakdown is positive.

In their article, the team reports experiments conducted between 10,000 and 60,000 times the pressure of the atmosphere at sea level, corresponding to depths in the earth of 30-190 km. Over that pressure range, the volume upon dehydration of serpentine changes from strongly positive to markedly negative, yet the faulting instability remains.

The microstructures preserved in the rocks after faulting provide insight into why this is so. The results confirm that earthquakes can be triggered by serpentine breakdown down to depths of as much as 250 km.

"I am becoming more and more convinced that mineral reactions also are involved in triggering shallow earthquakes such as those that threaten California," Green said. "Our hope is that we learn more about the thing we know least about, the initiation part of these earthquakes, how they get started. This is what we are trying to understand."


Additional Contacts:
NSF Program Contact: Robin Reichlin, rreichli@nsf.gov, 703-292-8550
UC-RiversideContact: Kris Lovekin, kris.lovekin@ucr.edu, 909-787-2495

NSF is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of nearly $5.58 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives about 40,000 competitive requests for funding, and makes about 11,000 new funding awards. NSF also awards over $200 million in professional and service contracts yearly.

Receive official NSF news electronically through the e-mail delivery system, NSFnews. To subscribe, send an e-mail message to join-nsfnews@lists.nsf.gov. In the body of the message, type "subscribe nsfnews" and then type your name. (Ex.: "subscribe nsfnews John Smith")

Cheryl Dybas | NSF
Further information:
http://www.nsf.gov
http://www.nsf.gov/od/lpa/news/media/start.htm

More articles from Earth Sciences:

nachricht Heidelberg Researchers Study Unique Underwater Stalactites
24.11.2017 | Universität Heidelberg

nachricht Lightning, with a chance of antimatter
24.11.2017 | Kyoto University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>